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CHAPTER

ONE

PLUTUS TOOLS SDK

The Plutus Tools SDK is a collection of off-chain infrastructure resources built for external developers. The Plutus
Tools SDK repository supports the underlying resources that developers need who are writing full applications using
Plutus in Haskell, including off-chain code. The term “off-chain code” refers to the part of a contract application’s
code which runs outside of the blockchain. Off-chain code responds to events happening on or off the blockchain,
usually by producing transactions.

This user guide is intended for developers who are authoring distributed applications (“DApps”) by using smart con-
tracts on the Cardano blockchain.

Note: If you are a developer who wants to contribute to the Plutus Tools SDK project, please refer to documentation
residing in the Plutus Tools SDK repository.
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CHAPTER

TWO

PLUTUS TOOLS SDK REPOSITORY

The Plutus Tools SDK repository contains packages such as:

• the Plutus Application Backend (PAB), an off-chain application for managing the state of Plutus contract in-
stances;

• the chain-index, a lightweight, customizable chain follower application and library for DApp developers who
need to index and query the Cardano blockchain;

• the Plutus Contract Package, a library for writing Plutus contracts and transforming them into executables that
run on the application platform;

• the Plutus Ledger Constraints Package, containing an API to build transactions by providing a list of constraints
and for constructing and validating Plutus transactions;

• the Trace Emulator, used for testing Plutus contracts on an emulated blockchain;

• a variety of other Plutus packages.
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THREE

USE CASES

Please refer to these use cases to see examples of Plutus applications.
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FOUR

PLUTUS STARTER TEMPLATE REPOSITORY (DEPRECATED)

See the Plutus starter template repository for a simple starter project using the Plutus Tools SDK.
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CHAPTER

FIVE

PUBLIC PLUTUS LIBRARIES DOCUMENTATION

See also the public Plutus libraries documentation to access Haddock-generated documentation of all the code, includ-
ing Plutus Core.

5.1 Explanations

5.1.1 Plutus tools in development

The Plutus tools are currently in development. Early iterations of the tools have undergone testing as part of our
research into their performance and features. Based on test results and feedback, our team has entered a new cycle of
development to address certain design aspects and to place a greater focus on selected features and capabilities.

Logical components

Plutus tools consists of libraries, executables and logical components within Haskell packages for external developers
to use. A single Haskell package may contain multiple logical components.

The tools are located in the plutus-apps repository.

For each tool or logical component shown below, we have indicated its specific location within plutus-apps and pro-
vided a brief description.

1. Marconi

Marconi
Location plutus-apps/marconi

Marconi is a library for indexing data from the Cardano blockchain. Marconi is faster and more flexible than chain-
index and will eventually replace it. Marconi is currently in an early alpha version. It has several indexers. While
much of the architecture is settled, some aspects are in the design stage.
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Fig. 1: Illustration of the Plutus Tools Ecosystem showing logical components and some indication of their dependen-
cies and relationships. (image source)10 Chapter 5. Public Plutus libraries documentation
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2. Plutus use case examples

Plutus use case examples
Location plutus-apps/plutus-use-cases

Plutus use case examples contains hand-written examples for the use cases we currently have. The primary examples
are:

• Auction,

• Crowdfunding,

• Game,

• GameStateMachine, and

• Vesting.

For each Plutus application use case, we provide test scenarios (or test cases) with and without the Plutus.
Contract.Test.ContractModel.

The examples are for testing and educational purposes. While they work in the plutus-contract emulator, they are not
guaranteed to work on the actual Cardano network, primarily because the size of the produced Plutus scripts are too
big to fit in a transaction given current protocol parameters.

3. PAB (Plutus application backend)

PAB
Location plutus-apps/plutus-pab

PAB is a web server library for managing the state of Plutus contract instances. The PAB executes the off-chain
component of Plutus applications. It manages application requests to the wallet backend, the Cardano node and the
chain-index. PAB stores the application state and offers an HTTP REST API for managing application instances.

PAB wraps the contracts built with plutus-contract. It is the central point of contact, integrating many Cardano com-
ponents.

4. Contract monad emulator

Contract monad emulator
Location plutus-apps/plutus-contract

Contract monad emulator is a library that provides an environment for emulating the blockchain. The environment
provides a way for writing traces for the contract which are sequences of actions by simulated wallets that use the
contract. The component is highly dependent on the Contract API (Contract monad).

5.1. Explanations 11
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5. Plutus contract model testing

Plutus contract model testing
Location plutus-apps/plutus-contract

Plutus contract model testing is used for testing prototype Plutus contracts with contract models, using the framework
provided by Plutus.Contract.Test.ContractModel. This framework generates and runs tests on the Plutus
emulator, where each test may involve a number of emulated wallets, each running a collection of Plutus contracts,
all submitting transactions to an emulated blockchain. Once you have defined a suitable model, then QuickCheck can
generate and run many thousands of scenarios, taking the application through a wide variety of states, and checking
that it behaves correctly in each one.

See the following tutorials:

• Property-based testing of Plutus contracts

• Testing Plutus Contracts with Contract Models

6. Plutus contract state machine

Plutus contract state machine
Location plutus-apps/plutus-contract

Plutus contract state machine is a library that is a useful high-level tool for defining and modeling a Plutus application
(smart contract) based on the State Machine formalism. It is helpful for writing a reference implementation for testing
before creating the production version. However, we do not recommend using it in production as the scripts are too
big to run on-chain.

7. Contract API (also known as Contract monad)

Contract API
Location plutus-apps/plutus-contract

Contract API is a logical component within the Plutus Contract package, providing an effect system for describing
smart contracts that interact with wallets, DApps, a chain indexer and the blockchain. It provides the Contract API
interface for writing the off-chain part of a Plutus application that is to be interpreted by an emulator or by Plutus
application backend (PAB).

8. Plutus chain index

Plutus chain index
Location plutus-apps/plutus-chain-index-core

plutus-apps/plutus-chain-index

Plutus chain index is an application for indexing data from the Cardano blockchain that is used in the Contract Monad.
The main design goal is to keep the size of the indexed information proportional to the UTXO set.

12 Chapter 5. Public Plutus libraries documentation
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9. Plutus Tx constraints

Plutus Tx constraints
Location plutus-apps/plutus-tx-constraints

Plutus-tx-constraints contains a constraints-based API that can be used to generate on-chain validation functions and
to build transactions by providing a list of constraints. The main design goal is to be able to use the same constraints
on-chain and off-chain in a Plutus application. The off-chain part generates transactions based on types in cardano-api.

For example:

• checkScriptContext (MustSpendAtLeast 10Ada, MustProduceOutput myOutput,
...)

• mkTx (MustSpendAtLeast 10Ada, MustProduceOutput myOutput, ...)

10. Plutus ledger

Plutus ledger
Location plutus-apps/plutus-ledger

Plutus ledger is a set of transitional types that simplify the cardano-api types. It is intended to be a comprehensive,
easy-to-use set of types that replicate the current era of cardano-api. It currently considers only the last era. Plutus
ledger contains data types and functions that complement cardano-ledger related to Plutus.

11. Plutus script utils

Plutus script utils
Location plutus-apps/plutus-script-utils

Plutus script utils is a utility library for helping users write Plutus scripts that are to be used on-chain. Plutus script
utils includes a variety of useful functions for on-chain operations in Plutus scripts.

It provides a number of utilities including:

• hashing functions for Datums, Redeemers and Plutus scripts for any Plutus language version.

• functionality for wrapping the untyped Plutus script with a typed interface.

• utility functions for working with the ScriptContext of a Plutus Script.

5.1.2 What is a rollback?

The Cardano network is a distributed system with many nodes operating at the same time. Each node keeps its own
local copy of the blockchain, extending it regularly with new blocks. At the same time, the node is talking to some
of the other nodes in the network in order to establish a consensus about what the canonical blockchain should be.
Sometimes the node discovers that its local version of the blockchain is different from the canonical one that the other
nodes agree on. When that happens, the node has to switch to the correct blockchain. In order to perform this switch,
the node first rolls back its own blockchain, by discarding the last couple of blocks that are different from the target
blockchain. After the rollback, the node’s local blockchain is a prefix of the target chain, so the node can safely roll

5.1. Explanations 13
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forward, to catch up with any missing blocks that exist on the target chain but haven’t yet been added to the local
chain.

Note: Rollbacks are part of the normal operation of the consensus algorithm and happen frequently.

Rollbacks cannot extend indefinitely into the past: The maximum number of blocks that may be discarded due to a
rollback is defined as a chain constant k, and any blocks that are deeper than k blocks in are guaranteed to never be
rolled back.

What does this mean for dapps?

To a Plutus app whose on-chain state is a set of unspent transaction outputs, the effect of a rollback is to undo changes
to the state of transaction outputs that were performed by transactions which are now being dropped as part of the
rollback. Let’s look at a concrete example to illustrate the effect of rollbacks.

In the example above, we have three different UTXO sets, and two blocks that transition between them:

UTXO set # Unspent outputs Changes to previous
1 A, B, C, D N/A
2 A, C, E, F, G B, D removed. E,F,G added.
3 A, C, E, F, H G removed. H added.

Now assume that the second block is rolled back, and our new ledger state is UTXO set No. 2 in the table. Rolling
back the block undoes the changes of Tx3: The state of output G changes back to unspent and H disappears altogether,
so its new state is unknown. If we roll back both blocks then the state of outputs B, D, E, F and G is also affected. B
and D are now unspent and E, F, and G are unknown.

Note that transactions that were rolled back may be reapplied if they are still valid, that is if their inputs haven’t been
spent by other transactions. For example, after rolling back block 2, Tx3 could be added to new chain at a later stage
(perhaps as part of a different block). Then the state of G would change again, from unspent to spent.

5.1.3 What is the PAB?

PAB is short for Plutus Application Backend. The Plutus Application Backend is the client-side runtime for Plutus
apps that are built with the Plutus Platform. It is the PAB’s task to deal with requests from running Contract
instances, to forward user input to them, and to notify them of ledger state change events.

The plutus-pab cabal package in the Plutus repository defines a plutus-pab Haskell library. Application de-
velopers use this library to build the actual PAB executable, specialised to one or more of their Contract s.

Note: In an older version of the PAB, each Contract was compiled to a separate executable, and there was a single
PAB that knew about all the locally available excutable contracts. This approach is not supported anymore.

14 Chapter 5. Public Plutus libraries documentation
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Fig. 2: Illustration of a blockchain with two blocks. Block 1 contains two transactions and block 2 contains one
transaction.
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Client interface

The PAB provides an HTTP and websocket interface for interacting with Contract instances. All PAB operations,
including starting new instances, calling endpoints on instances, and querying instance state, are performed using this
API. Application developers can build their own frontends and server processes that make HTTP calls to the PAB.

Other components

In addition to the PAB itself, the following components are required.

Chain index

The chain index is a database of data gathered from Cardano transactions. It uses the Cardano node’s chain sync
protocol. Therefore it needs to be co-located with a Cardano node. The chain index is a read-only component for the
PAB. Multiple instances of the PAB can therefore share a single instance of the chain index.

The expressiveness of queries supported by the chain index lies somewhere between that of the node, which answers
queries related to the ledger state, and that of db-sync, which has a full history of all transactions and an expressive
database schema for staking and other information.

All chain index queries are served over an HTTP API.

Alonzo node

The PAB subscribes to ledger state updates from the node, using a socket protocol.

Wallet

A Cardano wallet is required for balancing and signing transactions (and optionally submitting transactions). Balanc-
ing means taking a partial transaction and adding inputs and outputs to make the transaction valid.

Take Marlowe as an example. When the user first starts a Marlowe contract, funds need to be transferred from one
of the user’s addresses to the contract address. This is achieved by sending a partial transaction that has zero inputs
and a script output for the Marlowe contract instance to the wallet for balancing. The wallet adds some of its own
inputs to cover the amount that is to be paid into the contract, plus a change output for any excess funds. When the
Marlowe contract has finished, funds are transferred back to the user’s wallet using the same mechanism: The PAB
sends another partial transaction, this time with a single script input and no outputs. The wallet then adds an output at
one of its own addresses to receive the funds.

There are multiple ways to setup a wallet:

1. Host a cardano wallet backend instance (WBE) using cardano-wallet

2. Setup a desktop wallet application (ex. Daedalus)

3. Setup a browser wallet application (ex. Nami, Yoroi, etc.)

These different wallet setups each imply a different use-case of the PAB.

16 Chapter 5. Public Plutus libraries documentation
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Deployment Scenarios

There are two deployment models envisaged for the PAB: Hosted and in-browser. The hosted variant will be supported
at the initial release of the PAB. The in-browser variant will be available after the initial release.

Hosted

In the “Hosted PAB” scenario, the dApp provider / developer hosts an instance of the PAB alongside the chain index
and an Alonzo node. The off-chain code of the Plutus app is run on the dApp provider’s infrastructure.

In the following sections, we illustrate the ways a hosted PAB can be used with the different type of wallets.

WBE (Supported)

In this wallet scenario, the dApp provider /developer also hosts an instance of the WBE, which handles the wallets for
each user. The WBE handles balancing, signing and submitting transaction requests from the PAB.

Fig. 3: The hosted deployment scenario for the PAB with the WBE

This is currently used for testing purposes and shouldn’t be used in a production setting, because we wallets are
normally controlled by the users themselves.

A simple demo of this scenario is available here: https://github.com/input-output-hk/plutus-apps/tree/main/
plutus-pab/test-node.

5.1. Explanations 17
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Desktop wallet (Not yet supported)

In this wallet scenario, the user has setup a desktop wallet (light or full node) such as Daedalus. Transaction balancing
(coin selection) and transaction signing (in short: anything that deals with the user’s money) happens on the user’s
machine. The PAB produces a link (URI) for each partial transaction that needs to be balanced, signed and submitted.
When the user clicks the link, the user’s operating system opens the wallet that is registered to handle the link schema.
This scheme is not restricted to Daedalus, or even to full node wallets. Any wallet that implements a handler for the
link schema can be used to balance, sign and submit Plutus transactions.

Fig. 4: The hosted deployment scenario for the PAB communicating with a desktop wallet.

Browser wallet (In progress)

In this wallet scenario, the user has setup a browser wallet such as Nami or Yoroi. The PAB updates it’s contract
instance status endpoint for each partial transaction that needs to be balanced, signed and submitted. Transaction
signing happens on the user’s machine. However, transaction balancing (coin selection) is handled by the PAB as it
is not currently possible to balance transaction that contain script inputs in the browser (i.e. browser wallets can’t
balance transactions until it is possible to execute Plutus script in the browser). Therefore, browser wallets will need
to call a PAB helper endpoint which can balance the transaction using funds from the user’s browser wallet.

In-browser

In the “In-browser PAB” scenario, the dApp provider / developer hosts an instance of the chain index and an Alonzo
node. The dApp users work with a browser interface which uses a light version of the PAB.

Similary to the hosted PAB scenario, we illustrate the ways it can be used the different type of wallets.

18 Chapter 5. Public Plutus libraries documentation
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Fig. 5: The hosted deployment scenario for the PAB communicating with a browser wallet.

Desktop wallet (Not yet supported)

Browser wallet (Not yet supported)

5.1.4 What is the order book pattern?

The order book pattern is a way of organising distributed applications on Cardano. The key idea of the order book
pattern is to materialise actions that act on some state as UTXOs on the ledger, separating them from the state they act
on. The spending of those UTXOs (applying the action to the state) can be performed by an untrusted third party. The
pattern is helpful for designing applications that follow the Scalability guidelines.

Example: Distributed exchange

This is the example that gives the order book its name. A distributed exchange is an app that lets users trade currency
values in a decentralised fashion, without a central broker. At the heart of this app is the order book, a list of open buy
and sell offers for specific amounts of currency. Every buy order needs to be matched with a sell order.

Example 1: “Buy 2000 PEAR at 15.00 ADA”, “Sell 2000 PEAR at 14.95 ADA” are buy and sell orders for PEAR
tokens. In this example, the quantities (2000 units) are identical, and the sell price is lower then the buy price, so we
could match the two orders directly and keep the difference between buy and sell price as a fee.

Example 2: “Buy 2000 PEAR at 15.00 ADA”, “Sell 1500 PEAR at 14.95 ADA”. In this case we need to find at least
one other sell order for 500 PEAR to make the quantities match up, for example “Sell 500 PEAR at 14.99”. But this
isn’t the only solution to the problem: Maybe we can find another buy order and a bigger sell order, so that we can
resolve four orders simultaneously.

The example illustrates where the complexity lies in the order book system: In finding and matching orders in a way
that is profitable for the match maker (broker).

5.1. Explanations 19
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Fig. 6: The in-browser PAB communicating with a desktop wallet.

Fig. 7: The in-browser PAB communicating with a browser wallet.

20 Chapter 5. Public Plutus libraries documentation
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Orders and Plutus scripts

The order book lends itself to a nice representation in the EUTXO model. Every order is a single UTXO, and matching
a set of orders means building a transaction that spends the relevant UTXOs. The UTXOs are script UTXOs with a
known address and a datum value that holds the quoted price and some bookkeeping information (for example, an
address to pay the money to, and an expiration date). The currency value locked in the UTXO is the “inverse” of the
order.

Example 3: “Buy 2000 PEAR at 15.00 ADA” results in a script UTXO with 2000 * 15 = 30,000 ADA. “Sell 2000
PEAR at 14.95 ADA” gives a UTXO with 2000 PEAR tokens. The match maker can build a transaction that spends
the two UTXOs, pays 2000 PEAR tokens to the buyer, 29,000 ADA to the seller and the difference (100 ADA) to the
match maker without ever owning any PEAR tokens.

Decentralisation

It is clear that the match maker is a crucial component of the system. Without someone monitoring the script address
and building transactions that match buy orders with sell orders, the orders will never be fulfilled. How can we make
sure that the match maker does not become too powerful or too centralised?

We can achieve decentralisation by open-sourcing the scripts that lock the order outputs. With this code available to
the public, anyone can build and run a match-making service and earn fees from matching buy and sell orders. There
could even be a specialised PAB available for download somewhere that only runs the match making service, allowing
non-programmer users to run nodes for the DEX.

There is no risk of tokens being stolen because the Plutus script ensures that the outputs can only be spent if the order
is met exactly as specified. And while it is possible that the spending transactions suffer from UTXO congestion (if
multiple transactions that match a particular order are submitted), this does not have a negative impact on the user
experience, because the buyer or seller does not care which particular match maker ends up fulfilling their order. In
fact, match makers are incentivised to compete by providing faster fulfilment of orders, which actually results in a
better outcome for end users.

Generalising the pattern

The original application matches buyers and sellers of currency values, but there are other areas where the pattern is
useful.

Off-chain oracles

Imagine a Plutus script that says “If you give me the current USD/EUR exchange rate signed by a specific private key,
then I will pay you 5 ADA (and use the exchange rate to run the rest of my $BUSINESS_LOGIC)”. The match maker
then builds a transaction that combines the oracle value with the Plutus script. Of course this example requires the
match maker to be able to obtain the signed value, but it does succeed in decoupling consumers of the information
from producers.
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On-chain oracles

The pattern could also be a building block for on-chain oracles.

Let’s say we have a crypto-backed stablecoin, not too dissimilar to Djed, that relies on recent quotes of the exchange
rate between Ada and PEAR tokens. And we have a DEX like the one described above where Ada and PEAR are
actively traded. Every order fulfilled on the DEX gives us a snapshot of the exchange rate at that time. Example 1
from above would result in “15.00 ADA / PEAR” (using the buy price here but that’s just a technicality).

This is exactly the information that we need for our dealings with the stablecoin, but how do we get it from the DEX to
the stablecoin? There are two options. To choose the right one we need to consider the requirement and usage patterns
of our application.

1. Oracle UTXOs

We could change the DEX contract to produce a new script UTXO for each fulfilled order that records the time and
exchange rate of the order. The stablecoin user creates a UTXO with a script that requires an oracle UTXO to be
present in the spending transaction, and the match maker would put the oracle UTXO and the stablecoin-action UTXO
into one transaction and submit it.

2. Oracle tokens

In a variation of the first idea, the DEX could produce tokens that encode the script-certified information we are
interested in. We could set the asset name of the token to be the hash of the exchange rate data, and allow the
transaction to produce any quantitiy of these tokens when the order is fulfilled.

The minting policy of the oracle token should allow any number of tokens of the same asset name to be created as long
as at least one token with that asset name exists already, reflecting the idea that information is hard to obtain but easy
to replicate.

The consumer of the oracle token needs to check that a token with the expected minting policy hash is present in the
transaction, and that the datum value of the token’s asset name is available. Then it can use the information from the
datum. Maybe it could even destroy the token when it has been used.

This approach has the advantage of not clogging up the UTXO set too much, but the big question here is: How do
we make the oracle token available to the match maker? It has to be stored in an output that the match maker can
spend. The solution depends on the project. There is no general solution (yet) and some experimentation and research
is needed. Perhaps the tokenomics of the exchange could have incentives to make this information flow to where it is
needed.

State machines

State machines are a way of modeling smart contracts that is easy to understand and reason about. However, in their
basic formulation they keep the entire state of each individual execution in a single UTXO, which puts them at risk of
UTXO congestion caused by multiple users trying to transition the instance to a new state at the same time.

If we can batch multiple transitions into one (for example, by finding a suitable Semigroup instance for the state
machine’s input type) then we could use the order book pattern to allow a number of users to submit transitions
without spending the UTXO with the state machine instance’s state. The match maker would construct a transaction
that applies the sum of all proposed transitions in a single step. IOG is actively pursuing research in this area.
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Conclusion

In the order book pattern we materialise actions as transaction outputs on the ledger, separating them from the state
that they act on. The pattern is attractive because it decouples submission of orders (actions, requests for oracle values,
etc) from fulfilling them, and because it enables order fulfilment to be run in a fully decentralised, trustless fashion.
At the same time it fits the UTXO model very well, because it reduces the number of data dependencies on a single
unspent output.

5.2 Tutorials

5.2.1 Writing a basic Plutus app in an emulated environment

Plutus apps are programs that run off-chain and manage active contract instances. They monitor the blockchain, ask
for user input, and submit transactions to the blockchain. If you are a contract author, building a Plutus app is the
easiest way to create and spend Plutus script outputs. In this tutorial you are going to write a Plutus app that locks
some ada in a script output and splits them evenly between two recipients.

import Cardano.Node.Emulator.Params (pNetworkId)
import Control.Monad (forever, void)
import Control.Monad.Freer.Extras.Log (LogLevel (Debug, Info))
import Data.Aeson (FromJSON, ToJSON)
import Data.Default (def)
import Data.Text qualified as T
import Data.Text qualified as Text
import GHC.Generics (Generic)
import Ledger (CardanoAddress, PaymentPubKeyHash (unPaymentPubKeyHash),
→˓toPlutusAddress)
import Ledger.Tx.Constraints qualified as Constraints
import Ledger.Typed.Scripts qualified as Scripts
import Plutus.Contract (Contract, Endpoint, Promise, endpoint, getParams, logInfo,
→˓selectList, submitTxConstraints,

submitTxConstraintsSpending, type (.\/), utxosAt)
import Plutus.Contract.Test (w1, w2)
import Plutus.Script.Utils.Ada qualified as Ada
import Plutus.Trace.Emulator qualified as Trace
import Plutus.V1.Ledger.Api (Address, ScriptContext (ScriptContext,
→˓scriptContextTxInfo), TxInfo (txInfoOutputs),

TxOut (TxOut, txOutAddress, txOutValue), Value)
import PlutusTx qualified
import PlutusTx.Prelude (Bool, Maybe (Just, Nothing), Semigroup ((<>)), mapMaybe,
→˓mconcat, ($), (&&), (-), (.), (==),

(>=))
import Prelude (IO, (<$>), (>>))
import Prelude qualified as Haskell
import Wallet.Emulator.Stream (filterLogLevel)
import Wallet.Emulator.Wallet (Wallet, mockWalletAddress)
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Defining the types

You start by defining some data types that you’re going to need for the Split app.

data SplitData =
SplitData

{ recipient1 :: Address -- ^ First recipient of the funds
, recipient2 :: Address -- ^ Second recipient of the funds
, amount :: Ada.Ada -- ^ How much Ada we want to lock
}

deriving stock (Haskell.Show, Generic)

-- For a 'real' application use 'makeIsDataIndexed' to ensure the output is stable
→˓over time
PlutusTx.unstableMakeIsData ''SplitData
PlutusTx.makeLift ''SplitData

SplitData describes the two recipients of the funds, and the total amount of the funds denoted in ada.

You are using the Plutus.V1.Ledger.Api.Address type to identify the recipients. When making the payment
you can use the hashes to create two public key outputs.

Instances for data types

The SplitData type has instances for a number of typeclasses. These instances enable the serialisation of
SplitData to different formats. ToJSON and FromJSON are needed for JSON serialization. JSON objects are
passed between the frontend (for example, the Plutus apps emulator) and the app instance. PlutusTx.FromData
and PlutusTx.ToData are used for values that are attached to transactions, for example as the <redeemer> of
a script output. This class is used by the Plutus app at runtime to construct Data values. Finally, PlutusTx.
makeLift is a Template Haskell statement that generates an instance of the PlutusTx.Lift.Class.Lift
class for SplitData. This class is used by the Plutus compiler at compile-time to construct Plutus core programs.

Defining the validator script

The validator script is the on-chain part of our Plutus app. The job of the validator is to look at individual transactions
in isolation and decide whether they are valid. Plutus validators have the following type signature:

d -> r -> ScriptContext -> Bool

where d is the type of the <datum> and r is the type of the redeemer.

You are going to use the validator script to lock a script output that contains the amount specified in the SplitData.

Note: There is an n-to-n relationship between Plutus apps and validator scripts. Apps can deal with multiple valida-
tors, and validators can be used by different apps.

In this tutorial you only need a single validator. Its datum type is SplitData and its redeemer type is () (the unit
type). The validator looks at the Plutus.V1.Ledger.Api.ScriptContext value to see if the conditions for
making the payment are met:

validateSplit :: SplitData -> () -> ScriptContext -> Bool
validateSplit SplitData{recipient1, recipient2, amount} _ ScriptContext
→˓{scriptContextTxInfo} =

(continues on next page)
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let half = Ada.divide amount 2
outputs = txInfoOutputs scriptContextTxInfo

in
Ada.fromValue (valuePaidToAddr outputs recipient1) >= half &&
Ada.fromValue (valuePaidToAddr outputs recipient2) >= (amount - half)

where
valuePaidToAddr :: [TxOut] -> Address -> Value
valuePaidToAddr outs addr =

let flt TxOut{txOutAddress, txOutValue} | txOutAddress == addr = Just
→˓txOutValue

flt _ = Nothing
in mconcat $ mapMaybe flt outs

The validator checks that the transaction, represented by Plutus.V1.Ledger.Api.scriptContextTxInfo,
pays half the specified amount to each recipient.

You then need some boilerplate to compile the validator to a Plutus script (see Writing basic validator scripts in the
Plutus Core and Plutus Tx User Guide).

data Split
instance Scripts.ValidatorTypes Split where

type instance RedeemerType Split = ()
type instance DatumType Split = SplitData

splitValidator :: Scripts.TypedValidator Split
splitValidator = Scripts.mkTypedValidator @Split

$$(PlutusTx.compile [|| validateSplit ||])
$$(PlutusTx.compile [|| wrap ||]) where

wrap = Scripts.mkUntypedValidator @ScriptContext @SplitData @()

The Plutus.Script.Utils.V1.Typed.Scripts.Validators.ValidatorTypes class defines the
types of the validator, and splitValidator contains the compiled Plutus core code of validateSplit.

Asking for input

When you start the app, you want to ask the sender for a SplitData object. In Plutus apps, the mechanism for
requesting inputs is called endpoints.

All endpoints that an app wants to use must be declared as part of the type of the app. The set of all endpoints of
an app is called the schema of the app. The schema is defined as a Haskell type. You can build a schema using
the Plutus.Contract.Endpoint type family to construct individual endpoint types, and the .\/ operator to
combine them.

data LockArgs =
LockArgs

{ recipient1Address :: CardanoAddress
, recipient2Address :: CardanoAddress
, totalAda :: Ada.Ada
}

deriving stock (Haskell.Show, Generic)
deriving anyclass (ToJSON, FromJSON)

type SplitSchema =
Endpoint "lock" LockArgs
.\/ Endpoint "unlock" LockArgs
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The SplitSchema defines two endpoints, lock and unlock. Each endpoint declaration contains the endpoint’s
name and its type.

To use the lock endpoint in our app, you call the Plutus.Contract.Request.endpoint function:

lock :: Promise () SplitSchema T.Text ()
lock = endpoint @"lock" (lockFunds . mkSplitData)

unlock :: Promise () SplitSchema T.Text ()
unlock = endpoint @"unlock" (unlockFunds . mkSplitData)

endpoint has a single argument, the name of the endpoint. The name of the endpoint is a Haskell type, not a
value, and you have to supply this argument using the type application operator @. This operator is provided by the
TypeApplications GHC extension.

Next you need to turn the endpoint parameter datatype LockArgs into the SplitData datatype used by the Plutus
script.

mkSplitData :: LockArgs -> SplitData
mkSplitData LockArgs{recipient1Address, recipient2Address, totalAda} =

SplitData
{ recipient1 = toPlutusAddress recipient1Address
, recipient2 = toPlutusAddress recipient2Address
, amount = totalAda
}

Locking the funds

With the SplitData that you got from the user you can now write a transaction that locks the requested amount of
ada in a script output.

lockFunds :: SplitData -> Contract () SplitSchema T.Text ()
lockFunds s@SplitData{amount} = do

logInfo $ "Locking " <> Haskell.show amount
let tx = Constraints.mustPayToTheScriptWithDatumInTx s (Ada.toValue amount)
void $ submitTxConstraints splitValidator tx

Using the constraints library that comes with the Plutus SDK you specify a transaction tx in a single line.

After calling Plutus.Contract.submitTxConstraints in the next line, the Plutus app runtime examines
the transaction constraints tx and builds a transaction that fulfills them. The runtime then sends the transaction to the
wallet, which adds enough to cover the required funds (in this case, the ada amount specified in amount).

Unlocking the funds

All that’s missing now is the code for retrieving the funds, and some glue to put it all together.

unlockFunds :: SplitData -> Contract () SplitSchema T.Text ()
unlockFunds SplitData{recipient1, recipient2, amount} = do

networkId <- pNetworkId <$> getParams
let contractAddress = Scripts.validatorCardanoAddress networkId splitValidator
utxos <- utxosAt contractAddress
let half = Ada.divide amount 2

tx =
Constraints.collectFromTheScript utxos ()
<> Constraints.mustPayToAddress recipient1 (Ada.toValue half)

(continues on next page)
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<> Constraints.mustPayToAddress recipient2 (Ada.toValue $ amount - half)
void $ submitTxConstraintsSpending splitValidator utxos tx

In unlockFunds you use the constraints library to build the spending transaction. Here, tx combines three
different constraints. Ledger.Tx.Constraints.collectFromTheScript takes the script outputs in
unspentOutputs and adds them as input to the transaction, using the unit () as the redeemer. The other two
constraints use Ledger.Tx.Constraints.mustPayToAddress to add payments for the recipients.

Running the app on the Plutus apps emulator

You have all the functions you need for the on-chain and off-chain parts of the app. Every contract in the Plutus apps
emulator must define its public interface like this:

splitPlutusApp :: Contract () SplitSchema T.Text ()

splitPlutusApp is the high-level definition of our app:

splitPlutusApp = forever $ selectList [lock, unlock]

The Plutus.Contract.selectList function acts like a choice between two branches. The left branch starts
with lock and the right branch starts with unlock. The app exposes both endpoints and proceeds with the branch that
receives an answer first. So, if you call the lock endpoint in one of the simulated wallets, it will call lockFunds
and ignore the unlock side of the contract. The forever call, which runs the application in an infinite loop, is
necessary for the Plutus.Trace.Emulator.EmulatorTrace. If you omit it, you will only be able to trigger
a single endpoint after activating the contract, from which the contract instance will close.

You can now compile the contract and create a simulation. The following action sequence results in two transactions
that lock the funds and then distribute them to the two recipients.

runSplitDataEmulatorTrace :: IO ()
runSplitDataEmulatorTrace = do

Trace.runEmulatorTraceIO mkSplitDataEmulatorTrace

mkSplitDataEmulatorTrace :: Trace.EmulatorTrace ()
mkSplitDataEmulatorTrace = do

-- w1, w2, w3, ... are predefined mock wallets used for testing
let w1Addr = mockWalletAddress w1
let w2Addr = mockWalletAddress w2

h <- Trace.activateContractWallet w1 splitPlutusApp
Trace.callEndpoint @"lock" h $ LockArgs w1Addr w2Addr 10_000_000
void Trace.nextSlot
Trace.callEndpoint @"unlock" h $ LockArgs w1Addr w2Addr 10_000_000

You should see an output similar to what follows:

[INFO] Slot 0: TxnValidate
→˓d0f5b08cc20688becb8eceba9770a18ea49a49d5df159715b899736bd1d1121d [ ]
[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Contract instance started
[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Receive endpoint call on 'lock' for Object (fromList [("contents",
→˓Array [Object (fromList [("getEndpointDescription",String "lock")]),Object
→˓(fromList [("unEndpointValue",Object (fromList [("recipient1Address",String "addr_
→˓test1vz3vyrrh3pavu8xescvnunn4h27cny70645etn2ulnnqnssrz8utc"),("recipient2Address",
→˓String "addr_test1vzq2fazm26ug6yfemg3mcnpuwhkx6v558sy87fgtscvnefckqs3wk"),("totalAda
→˓",Object (fromList [("getLovelace",Number 1.0e7)]))]))])]),("tag",String
→˓"ExposeEndpointResp")])

(continues on next page)
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[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:
Contract log: String "Locking Lovelace {getLovelace = 10000000}"

[INFO] Slot 1: W[1]: Balancing an unbalanced transaction:
Tx:
Tx

→˓7733b05c8a3d6eb7ade1182beea8b1c1ad7440e7400ef238f7ffeab21e94cd9c:
{inputs:
reference inputs:
collateral inputs:
outputs:
- 10000000 lovelace addressed to
ScriptCredential:

→˓3e4f54085c2eb253b81fb958f3c3369ab6139c12964ee894ae57a908 (no staking credential)
with datum hash

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
mint:
fee: 0 lovelace
validity range: Interval {ivFrom = LowerBound NegInf True,

→˓ivTo = UpperBound PosInf True}
data:
(

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
, <<<"\162\194\fw\136z\206\FS\217\134\EM>Nu\186\189\137\

→˓147\207\213i\149\205\\\252\230\t\194">,
<>>,
<<"\128\164\244[V\184\141\DC19\218#\188L<u\236m2\148<\b\

→˓DEL%\v\134\EM<\167">,
<>>,
10000000> )

redeemers:}
Requires signatures:
Utxo index:

[INFO] Slot 1: W[1]: Finished balancing:
Tx

→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5:
{inputs:

-
→˓d0f5b08cc20688becb8eceba9770a18ea49a49d5df159715b899736bd1d1121d!50

-
→˓d0f5b08cc20688becb8eceba9770a18ea49a49d5df159715b899736bd1d1121d!51

reference inputs:
collateral inputs:
outputs:
- 10000000 lovelace addressed to
ScriptCredential:

→˓3e4f54085c2eb253b81fb958f3c3369ab6139c12964ee894ae57a908 (no staking credential)
with datum hash

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
- 9821079 lovelace addressed to
PubKeyCredential:

→˓a2c20c77887ace1cd986193e4e75babd8993cfd56995cd5cfce609c2 (no staking credential)
mint:
fee: 178921 lovelace
validity range: Interval {ivFrom = LowerBound NegInf True,

→˓ivTo = UpperBound PosInf True}
(continues on next page)
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data:
(

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
, <<<"\162\194\fw\136z\206\FS\217\134\EM>Nu\186\189\137\

→˓147\207\213i\149\205\\\252\230\t\194">,
<>>,
<<"\128\164\244[V\184\141\DC19\218#\188L<u\236m2\148<\b\DEL

→˓%\v\134\EM<\167">,
<>>,
10000000> )

redeemers:}
[INFO] Slot 1: W[1]: Signing tx:
→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5
[INFO] Slot 1: W[1]: Submitting tx:
→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5
[INFO] Slot 1: W[1]: TxSubmit:
→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5
[INFO] Slot 1: TxnValidate
→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5 [ ]
[INFO] Slot 2: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Receive endpoint call on 'unlock' for Object (fromList [("contents",
→˓Array [Object (fromList [("getEndpointDescription",String "unlock")]),Object
→˓(fromList [("unEndpointValue",Object (fromList [("recipient1Address",String "addr_
→˓test1vz3vyrrh3pavu8xescvnunn4h27cny70645etn2ulnnqnssrz8utc"),("recipient2Address",
→˓String "addr_test1vzq2fazm26ug6yfemg3mcnpuwhkx6v558sy87fgtscvnefckqs3wk"),("totalAda
→˓",Object (fromList [("getLovelace",Number 1.0e7)]))]))])]),("tag",String
→˓"ExposeEndpointResp")])
[INFO] Slot 2: W[1]: Balancing an unbalanced transaction:

Tx:
Tx

→˓91ed39867cbcc307d0beb619215e1c138e726105024dbb6668e5ffbfdd2fd754:
{inputs:

-
→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5!0

reference inputs:
collateral inputs:
outputs:
- 5000000 lovelace addressed to
PubKeyCredential:

→˓a2c20c77887ace1cd986193e4e75babd8993cfd56995cd5cfce609c2 (no staking credential)
- 5000000 lovelace addressed to
PubKeyCredential:

→˓80a4f45b56b88d1139da23bc4c3c75ec6d32943c087f250b86193ca7 (no staking credential)
mint:
fee: 0 lovelace
validity range: Interval {ivFrom = LowerBound NegInf True,

→˓ivTo = UpperBound PosInf True}
data:
(

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
, <<<"\162\194\fw\136z\206\FS\217\134\EM>Nu\186\189\137\

→˓147\207\213i\149\205\\\252\230\t\194">,
<>>,
<<"\128\164\244[V\184\141\DC19\218#\188L<u\236m2\148<\b\

→˓DEL%\v\134\EM<\167">,
<>>,

(continues on next page)
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10000000> )
redeemers:
RedeemerPtr Spend 0 : Constr 0 []

attached scripts:
PlutusScript PlutusV1 ScriptHash

→˓"3e4f54085c2eb253b81fb958f3c3369ab6139c12964ee894ae57a908"}
Requires signatures:
Utxo index:
(

→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5!0
, - 10000000 lovelace addressed to

ScriptCredential:
→˓3e4f54085c2eb253b81fb958f3c3369ab6139c12964ee894ae57a908 (no staking credential)

with datum hash
→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873 )
[INFO] Slot 2: W[1]: Finished balancing:

Tx
→˓6156586126d719203a5e22e67360550c8dd3d1565c2afeee576349b7ea84bc09:

{inputs:
-

→˓3aed0c9c37edee742d00559de3471f4ad6b791522ba224c17fe188a0efcdcda5!0

-
→˓d0f5b08cc20688becb8eceba9770a18ea49a49d5df159715b899736bd1d1121d!52

reference inputs:
collateral inputs:

-
→˓d0f5b08cc20688becb8eceba9770a18ea49a49d5df159715b899736bd1d1121d!52

outputs:
- 5000000 lovelace addressed to
PubKeyCredential:

→˓a2c20c77887ace1cd986193e4e75babd8993cfd56995cd5cfce609c2 (no staking credential)
- 5000000 lovelace addressed to
PubKeyCredential:

→˓80a4f45b56b88d1139da23bc4c3c75ec6d32943c087f250b86193ca7 (no staking credential)
- 9595609 lovelace addressed to
PubKeyCredential:

→˓a2c20c77887ace1cd986193e4e75babd8993cfd56995cd5cfce609c2 (no staking credential)
return collateral:

- 9393413 lovelace addressed to
PubKeyCredential:

→˓a2c20c77887ace1cd986193e4e75babd8993cfd56995cd5cfce609c2 (no staking credential)
total collateral: 606587 lovelace
mint:
fee: 404391 lovelace
validity range: Interval {ivFrom = LowerBound NegInf True,

→˓ivTo = UpperBound PosInf True}
data:
(

→˓43492163ee71f886ebc65c85f3dfa8db313f00d701b433b539811464d4355873
, <<<"\162\194\fw\136z\206\FS\217\134\EM>Nu\186\189\137\

→˓147\207\213i\149\205\\\252\230\t\194">,
<>>,
<<"\128\164\244[V\184\141\DC19\218#\188L<u\236m2\148<\b\DEL

→˓%\v\134\EM<\167">,
(continues on next page)
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<>>,
10000000> )

redeemers:
RedeemerPtr Spend 0 : Constr 0 []

attached scripts:
PlutusScript PlutusV1 ScriptHash

→˓"3e4f54085c2eb253b81fb958f3c3369ab6139c12964ee894ae57a908"}
[INFO] Slot 2: W[1]: Signing tx:
→˓6156586126d719203a5e22e67360550c8dd3d1565c2afeee576349b7ea84bc09
[INFO] Slot 2: W[1]: Submitting tx:
→˓6156586126d719203a5e22e67360550c8dd3d1565c2afeee576349b7ea84bc09
[INFO] Slot 2: W[1]: TxSubmit:
→˓6156586126d719203a5e22e67360550c8dd3d1565c2afeee576349b7ea84bc09
[INFO] Slot 2: TxnValidate
→˓6156586126d719203a5e22e67360550c8dd3d1565c2afeee576349b7ea84bc09 [ Data decoded
→˓successfully

→˓ , Redeemer decoded successfully

→˓ , Script context decoded successfully ]
Final balances
Wallet 7: 100000000 lovelace
Wallet 8: 100000000 lovelace
Wallet 6: 100000000 lovelace
Wallet 4: 100000000 lovelace
Wallet 2: 105000000 lovelace
Wallet 1: 94416688 lovelace
Wallet 10: 100000000 lovelace
Wallet 9: 100000000 lovelace
Wallet 3: 100000000 lovelace
Wallet 5: 100000000 lovelace

Exercise

1. Extract the function that assigns funds to each recipient from unlockFunds and validateSplit to reduce
redundancy in the code

2. Extend the contract to deal with a list of recipients instead of a fixed number of 2.

5.2.2 Extending the basic Plutus app with the constraints API

The previous tutorial (see Writing a basic Plutus app in an emulated environment) showed you how to write a Plutus
app that locks some Ada in a script output and splits them evenly between two recipients. In this tutorial, we will
reuse the same example, but we will use instead the constraints API which will be used to generate the on-chain and
off-chain part of the Plutus app. This will allow your application to create a transaction which is mostly consistent
with the validator function.

Given a SplitData, let’s start by defining a function which generates the constraints to unlock funds locked by the split
validator.

-- | Create constraints that will be used to spend a locked transaction output
-- from the script address.
--
-- These constraints will be used in the validation script as well as in the

(continues on next page)

5.2. Tutorials 31



Plutus Tools SDK User Guide, Release 1.0.0

(continued from previous page)

-- transaction creation step.
{-# INLINABLE splitDataConstraints #-}
splitDataConstraints :: SplitData -> TxConstraints () SplitData
splitDataConstraints SplitData{recipient1, recipient2, amount} =

Constraints.mustPayToAddress recipient1 (Ada.toValue half)
`mappend` Constraints.mustPayToAddress recipient2 (Ada.toValue $ amount - half)

where
half = Ada.divide amount 2

With the constraints, let’s start by defining the validator function.

-- | The validation logic is generated with `checkScriptContext` based on the set
-- of constraints.
{-# INLINABLE validateSplit #-}
validateSplit :: SplitData -> () -> ScriptContext -> Bool
validateSplit splitData _ =

Constraints.checkScriptContext (splitDataConstraints splitData)

As you can see, it’s much simpler than the original version.

Now to the off-chain part. The lock endpoint doesn’t change. However, we can change the unlock endpoint to use the
constraints we defined above.

unlock :: Promise () SplitSchema T.Text ()
unlock = endpoint @"unlock" (unlockFunds . mkSplitData)

-- | Creates a transaction which spends all script outputs from a script address,
-- sums the value of the scripts outputs and splits it between two payment keys.
unlockFunds :: SplitData -> Contract () SplitSchema T.Text ()
unlockFunds splitData = do

networkId <- pNetworkId <$> getParams
-- Get the address of the Split validator
let contractAddress = Scripts.validatorCardanoAddress networkId splitValidator
-- Get all utxos that are locked by the Split validator
utxos <- utxosAt contractAddress
-- Generate constraints which will spend all utxos locked by the Split
-- validator and split the value evenly between the two payment keys.
let constraints = Constraints.collectFromTheScript utxos ()

<> splitDataConstraints splitData
-- Create, Balance and submit the transaction
void $ submitTxConstraintsSpending splitValidator utxos constraints

That’s it! The rest of the contract is the same as the previous tutorial.

5.2.3 Property-based testing of Plutus contracts

Plutus comes with a library for testing contracts using QuickCheck. Tests generated by this library perform a sequence
of calls to contract endpoints, checking that tokens end up in the correct wallets at the end of each test. These sequences
can be generated at random, or in a more directed way to check that desirable states always remain reachable. This
tutorial introduces the testing library by walking through a simple example: a contract that implements a guessing
game.
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An overview of the guessing game

The source code of the guessing game contract is provided as an example here, and the final test code is here.

The game is played as follows:

• The first player locks a sum of Ada in the contract, which is donated as a prize. The prize is protected by a secret
password.

• Any player can now try to guess the password, by submitting a ‘guess’ transaction that attempts to withdraw
some or all of the prize, along with a guess at the password, and a new password to replace the old one. If
the guess is correct, and the contract contains enough Ada, then the guesser receives the withdrawal and the
remainder of the prize is now protected by the new password. If the guess is wrong, the transaction is not
accepted, and nothing changes.

As an extra wrinkle, when the first player locks the prize, a new token is also minted. Only the player currently holding
the token is allowed to make a guess–which gives us an opportunity to illustrate minting and passing around tokens.

The generated tests will exercise the contract by locking the prize, then moving the game token and making guesses at
random, checking that the game token and Ada move as they should.

Emulated wallets

To test contracts, we need emulated wallets. These and many other useful definitions for testing can be imported via

import Plutus.Contract.Test (Wallet, minLogLevel, mockWalletAddress, w1, w2, w3)

Now we can create a number of wallets: in this tutorial, we’ll settle for three:

wallets :: [Wallet]
wallets = [w1, w2, w3]

Values and tokens

Wallets contain ‘values’, which are mixtures of different quantities of one or more types of token. The most common
token is, of course, the Ada; we can import functions manipulating Ada, and the Value type itself, as follows:

import Ledger.Address qualified as Address
import Plutus.Script.Utils.Ada qualified as Ada
import Plutus.Script.Utils.Value qualified as Value

With these imports, we can construct values in the Ada currency:

> Ada.lovelaceValueOf 1
Value (Map [(,Map [(,1)])])

We will also need a game token. After importing the Scripts module

import Ledger.Typed.Scripts qualified as Scripts

we can define it as follows, applying a minting policy defined in the code under test (imported as module G):

import Plutus.Contracts.GameStateMachine qualified as G

import Cardano.Node.Emulator.TimeSlot qualified as TimeSlot
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import Data.Default (Default (def))

gameParam :: G.GameParam
gameParam = G.GameParam (Address.toPlutusAddress $ mockWalletAddress w1) (TimeSlot.
→˓scSlotZeroTime def)

guessTokenVal :: Value.Value
guessTokenVal =

let sym = Scripts.forwardingMintingPolicyHash $ G.typedValidator gameParam
in G.token sym "guess"

The value of the token is (with long hash values abbreviated):

> guessTokenVal
Value (Map [(f687...,Map [(guess,1)])])

We can even construct a Value containing an Ada and a game token:

> Ada.lovelaceValueOf 1 <> guessTokenVal
Value (Map [(,Map [(,1)]),(f687...,Map [(guess,1)])])

If you inspect the output closely, you will see that a Value contains maps nested within another Map. The outer
Map is indexed by hashes of minting policy scripts, so each inner Map contains a bag of tokens managed by the same
policy. Token names can be chosen freely, and each policy can manage any number of its own token types. In this case
the game token is called a “guess”, and the script managing game tokens has the hash f687. . . A little confusingly, the
Ada token name is displayed as an empty string, as is the hash of the corresponding minting policy.

Introducing contract models

We test contracts using a model of the system, which includes the state(s) of all the agents involved–the on-chain
state, the off-chain state on your computer, the off-chain state on anyone else’s computer–everything relevant to the
contract(s) under test. The first job to be done is thus defining that model. To do so, we import the contract modelling
library

import Plutus.Contract.Test.ContractModel qualified as CM

and define the model type:

data GameModel = GameModel

This definition is incomplete: we shall fill in further details as we proceed.

The GameModel type must be an instance of the Plutus.Contract.Test.ContractModel.Interface.
ContractModel class, which has an associated datatype defining the kinds of actions that will be performed in
generated tests.

instance CM.ContractModel GameModel where

data Action GameModel = Lock Wallet String Integer
| Guess Wallet String String Integer
| GiveToken Wallet

deriving (Eq, Show, Generic)

In this case we define three actions:
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• a Lock action to be performed by the first player when starting the game, containing the player’s wallet (from
which the Ada will be taken), the secret password, and the prize amount.

• a Guess action to be performed by the other players, containing the player’s wallet (to receive the prize), the
player’s guess, a new password, and the amount to be claimed if the guess is right.

• a GiveToken action, to give the game token to a player so they can make a guess.

A generated test is called Plutus.Contract.Test.ContractModel.Interface.Actions, and is, as
the name suggests, essentially a sequence of Plutus.Contract.Test.ContractModel.Interface.
Action values. We can run tests by using Plutus.Contract.Test.ContractModel.Interface.
propRunActions_:

prop_Game :: CM.Actions GameModel -> Property
prop_Game actions = CM.propRunActions_ actions

When we test this property, quickCheck will generate random action sequences to be tested, checking at the end of
each test that tokens are transferred correctly, and contracts didn’t crash.

Note: There is also a more general function Plutus.Contract.Test.ContractModel.
Interface.propRunActions that allows the check at the end of each test to be customized.

But how does quickCheck know what code to run when you check prop_Game? Plutus.Contract.Test.
ContractModel.Interface.propRunActions_ needs to create a handle for each contract instance, which
is used to invoke their endpoints from the test. Different contracts have different endpoints, of different types–and thus
different schemas. When we invoke an endpoint, we need to know the schema of the contract we are invoking, and the
type of errors it can return, so that the type-checker can ensure that the call is valid. We thus need to know the type of
contract that each handle refers to.

To achieve this, every contract instance in a test is named by a Plutus.Contract.Test.ContractModel.
Interface.ContractInstanceKey, another associated datatype of the Plutus.Contract.Test.
ContractModel.Interface.ContractModel class; we talk to a contract instance by referring to
its Plutus.Contract.Test.ContractModel.Interface.ContractInstanceKey. The Plutus.
Contract.Test.ContractModel.Interface.ContractInstanceKey type is parameterised both on
the type of the contract model, and on the observable state, schema, and error type of the contract it refers to. Since
the same test may refer to contracts of several different types, Plutus.Contract.Test.ContractModel.
Interface.ContractInstanceKey is defined as a GADT.

In this particular case, there is only one type of contract under test, and so it suffices to define a Plutus.Contract.
Test.ContractModel.Interface.ContractInstanceKey type with a single constructor. There is one
contract instance running in each emulated wallet, so we simply distinguish contract instance keys by the wallet they
are running in:

data ContractInstanceKey GameModel w schema err param where
WalletKey :: Wallet -> CM.ContractInstanceKey GameModel () G.

→˓GameStateMachineSchema G.GameError ()

Once this type is defined, we can tell QuickCheck what code to run for a given contract by fill-
ing in the Plutus.Contract.Test.ContractModel.Interface.initialInstances, Plutus.
Contract.Test.ContractModel.Interface.instanceWallet, and Plutus.Contract.Test.
ContractModel.Interface.instanceContract fields of the ContractModel class:

initialInstances = (`CM.StartContract` ()) . WalletKey <$> wallets

instanceContract _ WalletKey{} _ = G.contract
(continues on next page)
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instanceWallet (WalletKey w) = w

This specifies (reading top to bottom) that we should create one contract instance per wallet w, that will run G.
contract, in wallet w.

Now we can run tests, although of course they will not yet succeed:

> quickCheck prop_Game

*** Failed! (after 1 test and 1 shrink):
Exception:

GSM.hs:65:10-32: No instance nor default method for class operation arbitraryAction

The contract modelling library cannot generate test cases, unless we specify how to generate an Plutus.
Contract.Test.ContractModel.Interface.Action, which we will do next.

Generating actions

To generate actions, we need to be able to generate wallets, guesses, and suitable values of Ada, since these appear as
action parameters.

genWallet :: Gen Wallet
genWallet = elements wallets

genGuess :: Gen String
genGuess = elements ["hello", "secret", "hunter2", "*******"]

genValue :: Gen Integer
genValue = getNonNegative <$> arbitrary

We choose wallets from the three available, and we choose passwords from a small set, so that random guesses will
often be correct. We choose Ada amounts to be non-negative integers, because negative amounts would be error cases
that we choose not to test.

Now we can define a generator for Plutus.Contract.Test.ContractModel.Interface.Action, as a
method of the Plutus.Contract.Test.ContractModel.Interface.ContractModel class:

arbitraryAction s = oneof $
[ Lock <$> genWallet <*> genGuess <*> genValue ] ++
[ Guess <$> genWallet <*> genGuess <*> genGuess <*> genValue ] ++
[ GiveToken <$> genWallet ]

With this method defined, we can start to generate test cases. Using sample we can see what action sequences look
like:

> sample (arbitrary :: Gen (Actions GameModel))
Actions

[Lock (Wallet 2) "hunter2" 5,
Guess (Wallet 3) "*******" "hello" 6,
Guess (Wallet 1) "secret" "*******" 10,
Guess (Wallet 3) "*******" "*******" 6,
GiveToken (Wallet 3),
Guess (Wallet 2) "hunter2" "hunter2" 15]

.

.
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We can even run ‘tests’ now, although they don’t do much yet:

> quickCheck prop_Game
+++ OK, passed 100 tests:

Actions (2263 in total):
33.94% Lock
33.89% Guess
32.17% GiveToken

The output tells us the distribution of generated actions, aggregated across all the tests. We can see that each action
was generated around one third of the time, which is to be expected since our generator does not weight them at all.
Keep an eye on this table as we extend our generation; if any Plutus.Contract.Test.ContractModel.
Interface.Action disappears altogether, or is generated very rarely, then this indicates a problem in our tests.

Modelling expectations

The ultimate purpose of our tests is to check that funds are transferred correctly by each operation–for example, that
after a guess, the guesser receives the requested Ada only if the guess was correct. An important part of a Plutus.
Contract.Test.ContractModel.Interface.ContractModel defines how funds are expected to move.
However, it’s clear that in order to define how we expect funds to move after a Guess, we need to know more than
just where all the Ada are. We need to know:

• what the current secret password is, so we can decide whether or not the guess is correct.

• whether or not the guesser currently holds the game token, and so is entitled to make a guess.

• how much Ada is currently locked in the contract, so we can determine whether the guesser is requesting funds
that actually exist.

These all depend on the previous steps in the test case. To keep track of such information, we store it in a con-
tract state, which is the type parameter of the Plutus.Contract.Test.ContractModel.Interface.
ContractModel class. (Note that this contract state is a part of the model, it may be quite different from the
contract state in the implementation). In this case the contract state is the GameModel type, so let’s complete its
definition:

data GameModel = GameModel
{ _gameValue :: Integer
, _hasToken :: Maybe Wallet
, _currentSecret :: String }

deriving (Show, Generic)

makeLenses 'GameModel

Initially the game token does not exist, so we record its current owner as a Maybe Wallet, so that we can represent
the initial situation before its creation. The locked funds are always in Ada, so in the model it suffices to store an
integer.

Now we can define the initial state of the model at the start of each test case, Plutus.Contract.Test.
ContractModel.Interface.initialState, and a Plutus.Contract.Test.ContractModel.
Interface.nextState function to model the way we expect each operation to change the state. These are
both methods in the Plutus.Contract.Test.ContractModel.Interface.ContractModel class.

The initial state just records that the game token does not exist yet, and assigns default values to the other fields.

initialState = GameModel
{ _gameValue = 0

(continues on next page)
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, _hasToken = Nothing
, _currentSecret = ""
}

The Plutus.Contract.Test.ContractModel.Interface.nextState function is defined in the
Plutus.Contract.Test.ContractModel.Interface.Spec monad

nextState :: CM.Action state -> CM.Spec state ()

and defines the expected effect of each operation.

The Lock operation creates the contract, initializing the model contract state (using %= and gen-
erated Lens operations), mints the game token (using Plutus.Contract.Test.ContractModel.
Interface.mint), deposits it in the creator’s wallet, and withdraws the Ada locked in the contract
(using Plutus.Contract.Test.ContractModel.Interface.deposit and Plutus.Contract.
Test.ContractModel.Interface.withdraw):

nextState (Lock w secret val) = do
hasToken .= Just w
currentSecret .= secret
gameValue .= val
CM.mint guessTokenVal
CM.deposit w guessTokenVal
CM.withdraw w $ Ada.lovelaceValueOf val

A Plutus.Contract.Test.ContractModel.Interface.ContractModel actually tracks not only the
contract model state (in our case the GameModel type), but also the quantities of tokens expected to be in each
wallet, which are checked at the end of each test. It is these expectations that are manipulated by Plutus.
Contract.Test.ContractModel.Interface.mint, Plutus.Contract.Test.ContractModel.
Interface.deposit, etc. . . don’t confuse them with operations that actually mint or move tokens in the im-
plementation. The Plutus.Contract.Test.ContractModel.Interface.ModelState type contains
all of this information.

When making a guess, we need to check parts of the contract state (which we read using Plutus.Contract.
Test.ContractModel.Interface.viewContractState), and then we update the stored password, game
value, and wallet contents appropriately.

nextState (Guess w old new val) = do
correctGuess <- (old ==) <$> CM.viewContractState currentSecret
holdsToken <- (Just w ==) <$> CM.viewContractState hasToken
enoughAda <- (val <=) <$> CM.viewContractState gameValue
when (correctGuess && holdsToken && enoughAda) $ do

currentSecret .= new
gameValue %= subtract val
CM.deposit w $ Ada.lovelaceValueOf val

GiveToken just transfers the game token from one wallet to another using Plutus.Contract.Test.
ContractModel.Interface.transfer.

nextState (GiveToken w) = do
w0 <- fromJust <$> CM.viewContractState hasToken
CM.transfer w0 w guessTokenVal
hasToken .= Just w

At the end of each test, the Plutus.Contract.Test.ContractModel.Interface.ContractModel
framework checks that every wallet contains the tokens that the model says it should.
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We can exercise the Plutus.Contract.Test.ContractModel.Interface.nextState function al-
ready by generating and ‘running’ tests, even though we have not yet connected these tests to the real contract. Doing
so immediately reveals a problem:

> quickCheck prop_Game

*** Failed! (after 3 tests and 3 shrinks):
Exception:

Maybe.fromJust: Nothing
CallStack (from HasCallStack):
error, called at libraries/base/Data/Maybe.hs:148:21 in base:Data.Maybe
fromJust, called at GSM0.hs:122:15 in main:GSM0

Actions
[GiveToken (Wallet 1)]

Looking at the last two lines, we see the generated test sequence, and the problem is evident: we generated a test that
only gives the game :term:`token` to wallet 1, but this makes no sense because the game token has not yet been
minted–so the fromJust in the Plutus.Contract.Test.ContractModel.Interface.nextState
function fails. We will see how to prevent this in the next section.

Restricting test cases with preconditions

As we just saw, not every sequence of actions makes sense as a test case; we need a way to restrict test cases to be
‘sensible’. Note this is not the same as restricting tests to ‘the happy path’: we want to test unexpected sequences of
actions, and indeed, this is part of the strength of property-based testing. But there are some actions–like trying to give
the game token to a wallet before it has been minted–that are not even interesting to test. These are the cases that we
rule out by defining preconditions for actions; the effect is to prevent such test cases ever being generated.

To introduce preconditions, we add a definition of the Plutus.Contract.Test.ContractModel.
Interface.precondition method to our Plutus.Contract.Test.ContractModel.Interface.
ContractModel instance.

precondition :: CM.ModelState state -> CM.Action state -> Bool

The Plutus.Contract.Test.ContractModel.Interface.precondition is parameterised on the en-
tire model state, which includes the contents of wallets as well as our contract state, so we will need to extract this
state as well as the fields we need from it. For now, we just restrict GiveToken actions to states in which the token
exists:

precondition s (GiveToken _) = isJust tok
where

tok = s ^. CM.contractState . hasToken
precondition s _ = True

Now if we try to run tests, something more interesting happens:

> quickCheck prop_Game

*** Failed! Assertion failed (after 2 tests):
Actions
[Lock (Wallet 1) "hello" 0]

Expected funds of W1 to change by
Value (Map [(f687...,Map [(guess,1)])])

but they did not change
Test failed.
Emulator log:
[INFO] Slot 1: TxnValidate 4feb...
[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Contract instance for wallet 1}:

(continues on next page)
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Contract instance started
[INFO] Slot 1: 00000000-0000-4000-8000-000000000001 {Contract instance for wallet 2}:

Contract instance started
[INFO] Slot 1: 00000000-0000-4000-8000-000000000002 {Contract instance for wallet 3}:

Contract instance started

The test has failed, of course. The generated (and simplified) test case only performs one action:

Actions
[Lock (Wallet 1) "hello" 0]

Wallet 1 attempts to create a game contract guarding zero Ada. Inspecting the error message, we can see that wallet 1
ended up with the wrong contents:

Expected funds of W1 to change by
Value (Map [(f687...,Map [(guess,1)])])

but they did not change

Our model predicted that wallet 1 would end up containing the game token, but in fact its contents were unchanged.

In this test, we have actually performed actions in the emulator, as the log shows us: one transaction has been validated,
and we have started three contract instances (one for each wallet in the test). But we have not created a game token for
wallet 1, because thus far we have not defined how actions in a test should be performed–so the Lock action in the
test case behaves as a no-op, which of course does not deposit a game token in wallet 1. It is time to link actions in a
test to the emulator.

Performing actions

So far we are generating actions, but we have not yet linked them to the contract they are supposed to test–so ‘running’
the tests, as we did above, did not invoke the contract at all. To do so, we must import the emulator

import Plutus.Trace.Emulator qualified as Trace

Then we define the Plutus.Contract.Test.ContractModel.Interface.perform method of the
Plutus.Contract.Test.ContractModel.Interface.ContractModel class:

perform
:: CM.HandleFun state
-> (CM.SymToken -> Value.AssetClass)
-> CM.ModelState state
-> CM.Action state
-> CM.SpecificationEmulatorTrace ()

The job of the Plutus.Contract.Test.ContractModel.Interface.perform method in this case is
just to invoke the contract end-points, using the API defined in the code under test, and transfer the game token from
one wallet to another as specified by GiveToken actions.

gameParam :: G.GameParam
gameParam = G.GameParam (Address.toPlutusAddress $ mockWalletAddress w1) (TimeSlot.
→˓scSlotZeroTime def)

perform handle _ s cmd = case cmd of
Lock w new val -> do

Trace.callEndpoint @"lock" (handle $ WalletKey w)

(continues on next page)
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G.LockArgs
{ G.lockArgsGameParam = gameParam
, G.lockArgsSecret = secretArg new
, G.lockArgsValue = Ada.lovelaceValueOf val
}

Guess w old new val -> do
Trace.callEndpoint @"guess" (handle $ WalletKey w)

G.GuessArgs
{ G.guessArgsGameParam = gameParam
, G.guessTokenTarget = Address.toPlutusAddress $

→˓mockWalletAddress w
, G.guessArgsOldSecret = old
, G.guessArgsNewSecret = secretArg new
, G.guessArgsValueTakenOut = Ada.lovelaceValueOf val
}

GiveToken w' -> do
let w = fromJust (s ^. CM.contractState . hasToken)
Trace.payToWallet w w' guessTokenVal
return ()

Every call to an end-point must be associated with one of the contract instances defined in our initialInstances;
the handle argument to Plutus.Contract.Test.ContractModel.Interface.perform lets us
find the contract handle associated with each Plutus.Contract.Test.ContractModel.Interface.
ContractInstanceKey.

For the most part, it is good practice to keep the Plutus.Contract.Test.ContractModel.Interface.
perform function simple: a direct relationship between actions in a test case and calls to contract endpoints makes
interpreting test failures much easier.

Note: Helping shrinking work better by choosing test case actions well

In the definition of Plutus.Contract.Test.ContractModel.Interface.perform above,
the GiveToken action is a little surprising: when we call the emulator, we have to specify not only
the wallet to give the token to, but also the wallet to take the token from. So why did we choose
to define a GiveToken w action to include in test cases, rather than an action PassToken w w',
which would correspond more directly to the code in Plutus.Contract.Test.ContractModel.
Interface.perform?

The answer is that using GiveToken actions instead helps QuickCheck to shrink failing tests more ef-
fectively. QuickCheck shrinks test cases by attempting to remove actions from them–essentially replacing
an action by a no-op. But consider a sequence such as

PassToken w1 w2
PassToken w2 w3

which transfers the game token in two steps from wallet 1 to wallet 3. Deleting either one of these steps
means the game token will end up in the wrong place, probably causing the next steps in the test to behave
very differently (and thus, preventing this shrinking step). But given the sequence

GiveToken w2
GiveToken w3

the first GiveToken can be deleted without affecting the behaviour of the second at all. Thus, by making
token-passing steps independent of each other, we make it easier for QuickCheck to shrink a failing test
without drastic changes to its behaviour.
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Shrinking Actions

Before starting to run tests seriously, it is useful to make sure that any failing tests will shrink well to small examples.
By default, the contract modelling library tries to shrink tests by removing actions, but it cannot know how to shrink the
actions themselves. We can specify this shrinking by defining the Plutus.Contract.Test.ContractModel.
Interface.shrinkAction operation in the Plutus.Contract.Test.ContractModel.Interface.
ContractModel class:

shrinkAction :: CM.ModelState state -> CM.Action state -> [CM.Action state]

This function returns a list of ‘simpler’ actions that should be tried as replacements for the given Plutus.
Contract.Test.ContractModel.Interface.Action, when QuickCheck is simplifying a failed test. In
this case we define a shrinking function for wallets:

shrinkWallet :: Wallet -> [Wallet]
shrinkWallet w = [w' | w' <- wallets, w' < w]

and shrink actions by shrinking the wallet and Ada parameters.

shrinkAction _s (Lock w secret val) =
[Lock w' secret val | w' <- shrinkWallet w] ++
[Lock w secret val' | val' <- shrink val]

shrinkAction _s (GiveToken w) =
[GiveToken w' | w' <- shrinkWallet w]

shrinkAction _s (Guess w old new val) =
[Guess w' old new val | w' <- shrinkWallet w] ++
[Guess w old new val' | val' <- shrink val]

We choose not to shrink password/guess parameters, because they are not really significant–one password is as good
as another in a failed test.

Debugging the model

At this point, the contract model is complete, and tests are runnable. However, they do not pass, and so we need to
adapt either the tests or the contract to resolve the inconsistencies revealed. Testing prop_Game now results in:

> quickCheck prop_Game

*** Failed! Falsified (after 6 tests and 3 shrinks):
Actions
[Lock (Wallet 1) "hunter2" 0]

Expected funds of W1 to change by
Value (Map [(f687...,Map [(guess,1)])])

but they did not change
Test failed.
Emulator log:
... 49 lines of emulator log messages ...

In this test, wallet 1 attempts to lock zero Ada, and our model predicts that wallet 1 should receive a game token–but
this did not happen. To understand why, we need to study the emulator log. Here are the relevant parts:

...
[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Contract instance for wallet 1}:

Receive endpoint call: Object (fromList [("tag",String "lock"),...
[INFO] Slot 1: W1: Balancing an unbalanced transaction:

Tx:

(continues on next page)
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Tx 2542...:
{inputs:
outputs:
- Value (Map []) addressed to
ScriptAddress: d1e1...

...
[INFO] Slot 1: W1: TxSubmit: 2542...
[INFO] Slot 2: TxnValidate 2542...
[INFO] Slot 2: W1: Balancing an unbalanced transaction:

Tx:
Tx 1eba...:
{inputs:

- 2542...!0
Redeemer: <>

outputs:
- Value (Map []) addressed to
ScriptAddress: d1e1...

mint: Value (Map [(f687...,Map [(guess,1)])])
...
[INFO] Slot 2: W1: TxSubmit: 2d66...

Here we see the endpoint call to lock being received during slot 1, resulting in a transaction with ID 2542...,
which pays zero Ada to the contract script. The transaction is balanced (which has no effect in this case), submitted,
and validated by the emulator at slot 2. Then another transaction, 1eba..., is created, which mints the game token.
This transaction is in turn balanced (resulting in a new hash, 2d66...), and submitted without error–but although no
errors are reported, this transaction is not validated.

Since the transaction is submitted in slot 2, we would expect it to be validated in slot 3. In fact, the problem here is
just that the test stopped too early, before the blockchain had validated this second transaction. The solution is just to
delay long enough for the blockchain to validate all the transactions we have submitted.

Adding delays to test cases

To give the blockchain time to validate the transactions generated by a Lock call, we need to delay by two slots. Why
two? Because the Lock contract endpoint submits two transactions to the blockchain. Likewise, we delay one slot
after each of the other actions. (If the delays we insert are too short, we will discover this later via failed tests).

We add a call to delay in each branch of Plutus.Contract.Test.ContractModel.Interface.
perform:

gameParam :: G.GameParam
gameParam = G.GameParam (Address.toPlutusAddress $ mockWalletAddress w1) (TimeSlot.
→˓scSlotZeroTime def)

perform handle _ s cmd = case cmd of
Lock w new val -> do

Trace.callEndpoint @"lock" (handle $ WalletKey w)
G.LockArgs

{ G.lockArgsGameParam = gameParam
, G.lockArgsSecret = secretArg new
, G.lockArgsValue = Ada.lovelaceValueOf val
}

CM.delay 2
Guess w old new val -> do

Trace.callEndpoint @"guess" (handle $ WalletKey w)
(continues on next page)
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G.GuessArgs
{ G.guessArgsGameParam = gameParam
, G.guessTokenTarget = Address.toPlutusAddress $

→˓mockWalletAddress w
, G.guessArgsOldSecret = old
, G.guessArgsNewSecret = secretArg new
, G.guessArgsValueTakenOut = Ada.lovelaceValueOf val
}

CM.delay 1
GiveToken w' -> do

let w = fromJust (s ^. CM.contractState . hasToken)
Trace.payToWallet w w' guessTokenVal
CM.delay 1

This makes the emulator delay one or two slots, but we also need to delay in our model, to keep the
model state in sync with the emulator. We do this using corresponding calls to Plutus.Contract.Test.
ContractModel.Interface.wait in the definition of Plutus.Contract.Test.ContractModel.
Interface.nextState:

nextState (Lock w secret val) = do
hasToken .= Just w
currentSecret .= secret
gameValue .= val
CM.mint guessTokenVal
CM.deposit w guessTokenVal
CM.withdraw w $ Ada.lovelaceValueOf val
CM.wait 2

and similarly in the other cases.

Does this change fix the problem? To find out, we should rerun the same test case, after updating the code.

Rerunning a failed test

The best way to save and rerun a QuickCheck test case is to copy-and-paste it from the QuickCheck output into your
code. Since prop_Game is just a function that takes the generated test as an argument, then we can rerun a test by
passing it to the property. In this case let us define

testLock :: Property
testLock = flip CM.forAllDL prop_Game $ CM.action $ Lock w1 "hunter2" 0

testLock is itself a Property, so we can test it using quickCheck. Testing it before adding the delays in the
last section generates the same output as before. Testing it after the delays are added results in

> quickCheck testLock
+++ OK, passed 100 tests.

Actions (100 in total):
100% Lock

The test passes, and the problem is fixed.

Note: Since there is no random generation in this test, there is no real need to test it 100 times. This can
be avoided by adding withMaxSuccess to the definition:
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testLock :: Property
testLock = withMaxSuccess 1 . flip CM.forAllDL prop_Game $ CM.action $ Lock
→˓w1 "hunter2" 0

Note: We save the failing test case, not the random seed used to generate it. This is the only way to
be sure that we repeat the same test that just failed. Usually, a failed test that QuickCheck reports is the
result of both random generation and shrinking, not random generation alone. Reusing the same random
seed would usually regenerate a much larger test, which might well fail for a different reason, leading
QuickCheck to report a different shrunk failing test. It is then impossible to know for sure whether or not
the change just made to the code fixed the problem it was intended to fix–it might just have changed the
way failed tests shrink. By rerunning exactly the same test case we can be sure that our change did fix
that problem, at least.

Controlling the log-level

When we rerun random tests, they fail for a different reason:

> quickCheck prop_Game

*** Failed! Assertion failed (after 5 tests and 7 shrinks):
Actions
[Lock (Wallet 1) "hunter2" 0,
Lock (Wallet 1) "hello" 0]

Outcome of Contract instance for wallet 1:
False

Failed 'Contract instance stopped with error'
Test failed.
Emulator log:
... 73 lines of emulator log messages ...

Looking at the failing test case,

Actions
[Lock (Wallet 1) "hunter2" 0,
Lock (Wallet 1) "hello" 0]

we can see that it does something unexpected: wallet 1 tries to lock twice. Our model allows this, but the error message
tells us that the contract instance crashed.

The emulator log output can be rather overwhelming, but we can eliminate the INFO messages by running the test
sequence with appropriate options. If we define

import Control.Monad.Freer.Extras.Log (LogLevel)

propGame' :: LogLevel -> CM.Actions GameModel -> Property
propGame' l s = CM.propRunActionsWithOptions

(set minLogLevel l CM.defaultCheckOptionsContractModel)
CM.defaultCoverageOptions
(\ _ -> pure True)
s

then we can re-run the test and see more succinct output:
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> quickCheck $ propGame' Warning

*** Failed! Assertion failed (after 7 tests and 4 shrinks):
Actions
[Lock (Wallet 1) "hello" 0,
Lock (Wallet 1) "*******" 0]

Outcome of Contract instance for wallet 1:
False

Failed 'Contract instance stopped with error'
Test failed.
Emulator log:
[WARNING] Slot 4: 00000000-0000-4000-8000-000000000000 {Contract instance for wallet
→˓1}:

Contract instance stopped with error: GameSMError (ChooserError
→˓"Found 2 outputs, expected 1")

Now we see the problem: an error in the game implementation that stopped the second contract call, because two
unspent transaction outputs had been created. These two outputs are the Ada amounts addressed to the contract script
that are created by the first transaction of each call to the Lock endpoint. The off-chain contract is not designed to
cope with more than one such UTXO; it is now in a broken state. In fact, the Ada now locked in these UTXOs cannot
be recovered by the present off-chain code–the only way to recover the money is to revise the contract so that it can
accept multiple UTXOs. Arguably, this is a bug in the contract: if any wallet tries to start the game for a second time,
the Ada will be lost (until the bug is fixed).

Refining preconditions

We just learned that a second Lock call puts the contract into a broken state. But this is not how the game was intended
to be used, so the developer might reasonably respond “you shouldn’t do that”. There could also be other problems in
the code that we cannot presently find, because they are masked by the double-lock bug. Since a test case with two
Lock calls is easy to generate, then QuickCheck is likely to report this particular problem in almost every subsequent
run–unless we explicitly prevent it from doing so.

We can easily avoid this by strengthening the precondition of Lock, so that it can only be performed once per test
case. We do so by checking whether any wallet holds the game token:

precondition s cmd = case cmd of
Lock {} -> isNothing tok
Guess {} -> True
GiveToken _ -> isJust tok

where
tok = s ^. CM.contractState . hasToken

Now the double-lock test case can no longer be generated. If we save the test case

testDoubleLock :: Property
testDoubleLock = flip CM.forAllDL prop_Game $ do
CM.action $ Lock w1 "*******" 0
CM.action $ Lock w1 "secret" 0

and try to rerun it, then QuickCheck will not do so:

> quickCheck testDoubleLock

*** Gave up! Passed only 0 tests; 1000 discarded tests.

When a precondition cannot be satisfied, then QuickCheck ‘gives up’ as we see here–the faulty test case was discarded
(1000 times).
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Rerunning random tests finds another ‘bug’:

> quickCheck $ propGame' Warning

*** Failed! Assertion failed (after 10 tests and 6 shrinks):
Actions
[Lock (Wallet 2) "hello" 0,
Guess (Wallet 1) "hello" "secret" 0]

Outcome of Contract instance for wallet 1:
False

Failed 'Contract instance stopped with error'
Test failed.
Emulator log:
[WARNING] Slot 3: W1: handleTx failed: InsufficientFunds "Total: Value (Map [(,Map [(,
→˓100000000)])]) expected: Value (Map [(f687...,Map [(guess,1)])])"
[WARNING] Slot 3: 00000000-0000-4000-8000-000000000000 {Contract instance for wallet
→˓1}:

Contract instance stopped with error: GameSMError
→˓(SMCContractError (WalletError (InsufficientFunds "Total: Value (Map [(,Map [(,
→˓100000000)])]) expected: Value (Map [(f687...,Map [(guess,1)])])")))

In this case, the contract instance in wallet 1 crashes, because the wallet contains ‘insufficient funds’. Reading the last
line closely, we see that although the wallet contained 100 million Ada, it lacked the game token, and so making a
guess was not allowed.

Arguably, the off-chain code should not have tried to submit the guess transaction without holding the game token, and
the contract instance should not have crashed. Or we might take the view that no harm is done, since the transaction is
rejected anyway. But the crashing contract does cause tests to fail, which–as before–is likely to prevent us discovering
other problems.

We can strengthen the precondition of Guess to prevent this from happening.

precondition s cmd = case cmd of
Lock {} -> isNothing tok
Guess w _ _ _ -> tok == Just w
GiveToken _ -> isJust tok

where
tok = s ^. CM.contractState . hasToken

With this change, the tests still fail, and we must study the entire log output to understand why:

> quickCheck $ prop_Game

*** Failed! Assertion failed (after 36 tests and 35 shrinks):
Actions
[Lock (Wallet 1) "*******" 1,
GiveToken (Wallet 2),
Guess (Wallet 2) "*******" "hello" 2,
Guess (Wallet 2) "*******" "hunter2" 1]

Expected funds of W2 to change by
Value (Map [(,Map [(,1)]),(f687...,Map [(guess,1)])])

but they changed by
Value (Map [(f687...,Map [(guess,1)])])

Test failed.
Emulator log:
... 52 lines of log output ...
[INFO] Slot 4: 00000000-0000-4000-8000-000000000001 {Contract instance for wallet 2}:

Receive endpoint call: Object (fromList [("tag",String "guess"),...
→˓Number 2.0...
... 25 lines of log output ...

(continues on next page)
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[INFO] Slot 5: TxnValidationFail ab0d...: NegativeValue ...
[INFO] Slot 5: 00000000-0000-4000-8000-000000000001 {Contract instance for wallet 2}:

Receive endpoint call: Object (fromList [("tag",String "guess"),...
→˓Number 1.0...

In this case, we lock one Ada, and then wallet 2 makes two guesses, both with the correct password. The first guess
tries to withdraw more Ada than are available, which our model predicts should be a no-op. Recall we defined:

nextState (Guess w old new val) = do
correctGuess <- (old ==) <$> CM.viewContractState currentSecret
holdsToken <- (Just w ==) <$> CM.viewContractState hasToken
enoughAda <- (val <=) <$> CM.viewContractState gameValue
when (correctGuess && holdsToken && enoughAda) $ do

currentSecret .= new
gameValue %= subtract val
CM.deposit w $ Ada.lovelaceValueOf val

CM.wait 1

Our model predicts that the second guess, with the correct password and a withdrawal of only one Ada, ought to
succeed. That is why we expected wallet 2 to end up with the game token, and one Ada. However, wallet 2 did not
receive the Ada, only the game token. Reading the emulator log reveals why: in slot 4 we called the guess endpoint
to withdraw two Ada, which would leave -1 Ada locked by the contract, but the transaction submitted to the blockchain
was not validated, and we see the error message NegativeValue. We made the second endpoint call, for the second
guess, but nothing more happened. This is because the validation failure did not crash the off-chain contract instance
(which would have provoked a test failure after the first guess), it just left it waiting for a result from the blockchain.
As a result, the contract instance is hanging, and ignores the second guess.

We can avoid this problem too, by strengthening the precondition further:

precondition s cmd = case cmd of
Lock _ _ v -> isNothing tok
Guess w _ _ v -> tok == Just w && v <= val
GiveToken w -> isJust tok

where
tok = s ^. CM.contractState . hasToken
val = s ^. CM.contractState . gameValue

Now the tests pass:

> quickCheck . withMaxSuccess 10000 $ prop_Game
+++ OK, passed 10000 tests.

Actions (241234 in total):
87.1324% GiveToken
9.0854% Guess
3.7822% Lock

It is good practice to run far more than 100 tests, once tests are passing.

In this section we discovered ways to crash the off-line contract instances, or leave them hanging. We debugged the
problems by strengthening preconditions–but of course, the problems are still there. We have just avoided provoking
them with our tests, which enabled us to continue testing and find more problems. But unless these problems are
corrected, enabling our preconditions to be weakened again, then all we know from our tests is that the contract
behaves correctly provided callers obey the preconditions.
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Measuring and tuning distributions

Running successful tests displays statistics over the test cases generated. By default, testing a Plutus.Contract.
Test.ContractModel.Interface.ContractModel just displays the distribution of types of action. Look-
ing at the output above, we can see that the vast majority of actions were GiveToken actions; only 9% were guesses,
and fewer than 4% were Lock actions.

It is not a surprise that there were relatively few Lock actions: our precondition guarantees that there can be at most
one Lock per test case, and this is intentional, so of course the other actions are much more common. However, we
almost certainly don’t want to test GiveToken almost ten times as often as Guess. What is going on?

The problem is this: after a Lock as the first action of a test case, every attempt to generate a GiveToken action
will succeed; that is, the precondition of the generated action will be True. But for Guess actions, many randomly
generated actions will not satisfy the precondition we ended up with, either because the wallet does not contain the
game token, or because the amount to be withdrawn is greater than the amount available.

To achieve a better distribution of tests, we need to redefine the action generator so that Guess actions more often
satisfy their precondition. The action generator is itself parameterized on the contract state, so we could guarantee
that generated guesses satisfy their preconditions by redefining it as follows:

arbitraryAction s = oneof $
[ Lock <$> genWallet <*> genGuess <*> genValue ] ++
[ Guess w <$> genGuess <*> genGuess <*> choose (0, val)
| Just w <- [tok] ] ++
[ GiveToken <$> genWallet ]
where

tok = s ^. CM.contractState . hasToken
val = s ^. CM.contractState . gameValue

With this change, Guess and GiveToken actions become equally frequent:

> quickCheck . withMaxSuccess 1000 $ prop_Game
+++ OK, passed 1000 tests.

Actions (23917 in total):
48.271% GiveToken
47.845% Guess
3.884% Lock

Custom generators vs preconditions

It may seem like wasted effort to encode the form of valid Guess actions twice, once in the precondition, and then
again in the generator. Would it not be sufficient to write the generator to target successful guesses in the first place,
and omit the precondition?

The answer is no: it would not. By writing the generator carefully, we can ensure that the generated Guess actions
are valid, but as soon as a test fails, and QuickCheck begins to shrink it, then the precondition becomes essential.
Without it, QuickCheck might remove a GiveToken action that makes a subsequent Guess valid, and then report
that the resulting test (not surprisingly) failed. It is only preconditions that ensure that shrunk test cases make sense.

Thus, the action generator cannot ensure that actions in test cases are valid; it can only skew the distribution of actions
towards valid ones. This means there is no need for the action generator to guarantee that the actions it generates are
valid; they will in any case have to pass the precondition before they are included in a test case. In fact, it is a little
dangerous to define a generator so that only actions satisfying the precondition are generated, because we might later
choose to weaken the precondition. If we do so, and forget to change the generator too, then we might end up with
less thorough testing than we expect. So rather than generate guesses as we did above, it would be better to define
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arbitraryAction s = oneof $
[ Lock <$> genWallet <*> genGuess <*> genValue ] ++
[ frequency $
[ (10, Guess w <$> genGuess <*> genGuess <*> choose (0, val))
| Just w <- [tok] ] ++
[ (1, Guess <$> genWallet <*> genGuess <*> genGuess <*> genValue) ] ] ++

[ GiveToken <$> genWallet ]
where

tok = s ^. CM.contractState . hasToken
val = s ^. CM.contractState . gameValue

which generates valid guesses most of the time, with the occasional possibly-invalid one. This approach results in test
cases with a reasonable balance between guessing and passing the game token, while ensuring that if the preconditions
are later changed, then we can still generate every test case we could before.

Instrumenting contract models to gather statistics

It is possible to gather further statistics about the tests we are generating. For example, we might won-
der what proportion of Guess actions are correct guesses. We can find out by defining the Plutus.
Contract.Test.ContractModel.Interface.monitoring method in the Plutus.Contract.
Test.ContractModel.Interface.ContractModel class:

monitoring :: (CM.ModelState state, CM.ModelState state) -> CM.Action state ->
→˓Property -> Property

This function is called for every Plutus.Contract.Test.ContractModel.Interface.Action in a test
case, and given the Plutus.Contract.Test.ContractModel.Interface.ModelState before and af-
ter the Plutus.Contract.Test.ContractModel.Interface.Action. Its result is a function that is ap-
plied to the property being tested, so it can use any of the QuickCheck functions for analysing test case distribution or
adding output to counterexamples.

To create a table showing the proportion of guesses which were right or wrong, we can define Plutus.Contract.
Test.ContractModel.Interface.monitoring as

monitoring (s, _) (Guess w guess new v) =
tabulate "Guesses" [if guess == secret then "Right" else "Wrong"]
where secret = s ^. CM.contractState . currentSecret

monitoring _ _ = id

This generates output such as this:

> quickCheck . withMaxSuccess 1000 $ prop_Game
+++ OK, passed 1000 tests.

Actions (23917 in total):
48.271% GiveToken
47.845% Guess
3.884% Lock

Guesses (11443 in total):
75.417% Wrong
24.583% Right

Around 25% of guesses were correct in this test run, which is not surprising since we chose guesses uniformly from a
list of four possibilities (and the Plutus.Contract.Test.ContractModel.Interface.precondition
for guesses does not depend on the choice). Since correct guesses are probably at least as interesting to test as incorrect
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ones, a sensible next step would be to modify the guess generator to guess correctly more often–perhaps half the time.
We leave this as an exercise for the reader.

It is always good practice to make measurements of the distribution of test cases like this, and then improve test case
generation to that the distribution looks reasonable. Otherwise there is a risk of developing a false sense of security,
engendered by running many thousands of trivial tests.

Goal-directed testing with dynamic logic

The tests we have developed so far test that ‘nothing bad ever happens’-the funds in a test always end up where the
model says that they should. To put it another way, funds are never stolen. But this does not really cover everything we
want to test: we also want to know that ‘something good eventually happens’, or at least, ‘something good is always
possible’. Concretely, this will often mean testing that the funds in a contract can always be recovered–they cannot
end up locked in a contract for ever. And indeed, in the case of the game contract, we would like to check that no
matter what has happened previously, the Ada locked by the contract can always be recovered by a player who knows
the password.

Here we are really identifying desirable ‘goal states’, namely those in which all the Ada have been recovered from the
contract, and aiming to test that a goal state is always reachable. Obviously, random tests are quite unlikely to end in
a goal state, so no particular conclusion can be drawn from one that does not. It is also hard to see how QuickCheck
might determine automatically whether a goal state is reachable or not. So we test this kind of property by allowing
the tester to specify a strategy for reaching a goal state; QuickCheck then tests that this strategy always works.

Introducing the dynamic logic monad

We write this kind of test using ‘dynamic logic’ wrapped in a monad, which just means that we write test case
generators that can mix random actions, specified actions, and assertions. These generators are little programs in the
Plutus.Contract.Test.ContractModel.Interface.DL monad, such as this one:

unitTest :: CM.DL GameModel ()
unitTest = do

CM.action $ Lock w1 "hello" 10
CM.action $ GiveToken w2
CM.action $ Guess w2 "hello" "new secret" 3

This Plutus.Contract.Test.ContractModel.Interface.DL fragment simply specifies a unit test in
terms of the underlying Plutus.Contract.Test.ContractModel.Interface.ContractModel we
have already seen, using Plutus.Contract.Test.ContractModel.Interface.action to include a spe-
cific Plutus.Contract.Test.ContractModel.Interface.Action in the test. To run such a test, we
must specify a QuickCheck property such as

propDL :: CM.DL GameModel () -> Property
propDL dl = CM.forAllDL dl prop_Game

which uses Plutus.Contract.Test.ContractModel.Interface.forAllDL to generate a test sequence
from the dl provided, and runs it using the same underlying property as before. The execution is checked against
the model, so we do not need to add any further assertions to this unit test. This gives us a very convenient way
to define unit tests for a contract specified by a Plutus.Contract.Test.ContractModel.Interface.
ContractModel.

We can run this test as follows:

> quickCheck . withMaxSuccess 1 $ propDL unitTest
+++ OK, passed 1 test.

(continues on next page)
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Actions (3 in total):
33% GiveToken
33% Guess
33% Lock

Quantifiers in dynamic logic

As well as writing unit tests in the Plutus.Contract.Test.ContractModel.Interface.DL monad, we
can add random generation. For example, if we wanted to generalize the unit test above a little to lock a random
amount of Ada in the contract, then we could instead write:

unitTest :: CM.DL GameModel ()
unitTest = do

val <- CM.forAllQ $ CM.chooseQ (1, 20)
CM.action $ Lock w1 "hello" val
CM.action $ GiveToken w2
CM.action $ Guess w2 "hello" "new secret" 3

Here Plutus.Contract.Test.ContractModel.Interface.forAllQ lets us generate a random value
using Test.QuickCheck.DynamicLogic.Quantify.chooseQ from quickcheck-dynamic:

chooseQ :: (Arbitrary a, Random a, Ord a) => (a, a) -> Quantification a

Plutus.Contract.Test.ContractModel.Interface.forAllQ takes a
Test.QuickCheck.DynamicLogic.Quantify.Quantification, which resembles a QuickCheck generator, but with a
more limited API to support its use in dynamic logic.

When this is tested, random values in the range 1-20 are locked. . . and a test fails:

> quickCheck $ propDL unitTest

*** Failed! Falsified (after 3 tests):
BadPrecondition

[Witness (1 :: Integer),
Do $ Lock (Wallet 1) "hello" 1,
Do $ GiveToken (Wallet 2)]
[Action (Guess (Wallet 2) "hello" "new secret" 3)]
(GameModel {_gameValue = 1, _hasToken = Just (Wallet 2), _currentSecret = "hello"})

Dynamic logic test cases are a little more complex than the simple action sequences we have seen so far, and they give
us a little more information. Every such test contains a list of Plutus.Contract.Test.ContractModel.
Interface.Action, tagged Do, and witnesses, tagged Witness. The witnesses record the results of random
choices made by Plutus.Contract.Test.ContractModel.Interface.forAllQ: in this case, the Ada
value to be locked was chosen to be 1. The test proceeds by locking the Ada and giving the game token to wallet 2,
but the third action we specified–making the guess–cannot be run, because its precondition is False. This is what
the BadPrecondition tells us, and the action that could not be performed appears as

[Action (Guess (Wallet 2) "hello" "new secret" 3)]

The last component is the model state at that point: we can see that the gameValue is only 1 Ada, so of course we
cannot withdraw 3.

Note: We saw earlier that when tests are generated from a Plutus.Contract.Test.
ContractModel.Interface.ContractModel, then QuickCheck only generates actions whose
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Plutus.Contract.Test.ContractModel.Interface.precondition is satisfied. On the
other hand, when we use dynamic logic to specify an action explicitly like this, then there is no guarantee
that its precondition will hold, and so a ‘bad precondition’ error becomes a possibility. The problem here
is really that this generalized unit test is inconsistent with our model.

Repeating a dynamic logic test

Once again, we can copy-and-paste the failed testcase into our source code:

badUnitTest :: CM.DL GameModel ()
badUnitTest = do
CM.action $ Lock w1 "hello" 1
CM.action $ GiveToken w2
CM.action $ Guess w2 "hello" "new secret" 3

We can rerun the test by supplying the precise action sequence that was generated:

> quickCheck $ forAllDL badUnitTest prop_Game

*** Failed! Falsified (after 1 test):

If we now correct unitTest and do freshly generated random tests we see that the issue is resolved:

> quickCheck $ forAllDL unitTest prop_Game
+++ OK, passed 100 tests.

Actions (300 in total):
33.3% GiveToken
33.3% Guess
33.3% Lock

In this case the saved test ‘passes’ because it no longer matches the modified Plutus.Contract.Test.
ContractModel.Interface.DL test, so it is not a counterexample to the property we are testing.

Something good is always possible

We saw above how to generate random parameters to actions in dynamic logic tests; what gives them their real power
is that we can also include random actions.

Suppose we want to test that no Ada remain locked in the game contract for ever. We could try to spec-
ify this with a Plutus.Contract.Test.ContractModel.Interface.DL test that requires that no Ada
remain locked in the contract after any sequence of actions. We can include a random sequence of actions
in a Plutus.Contract.Test.ContractModel.Interface.DL test using Plutus.Contract.Test.
ContractModel.Interface.anyActions_, and we can make assertions about the Plutus.Contract.
Test.ContractModel.Interface.ModelState using Plutus.Contract.Test.ContractModel.
Interface.assertModel. Thus we can define

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

CM.anyActions_
CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

to assert that, after any sequence of actions, no funds should remain locked (Plutus.Contract.Test.
ContractModel.Interface.lockedValue extracts the total value locked in contracts from the Plutus.
Contract.Test.ContractModel.Interface.ModelState).
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Of course, this test fails:

> quickCheck $ forAllDL noLockedFunds prop_Game

*** Failed! Falsified (after 1 test and 2 shrinks):
BadPrecondition

[Do $ Lock (Wallet 1) "*******" 1]
[Assert "Locked funds should be zero"]
(GameModel {_gameValue = 1, _hasToken = Just (Wallet 1), _currentSecret = "*******"}

→˓)

If all we do is lock one Ada, then obviously the locked funds are not zero. The failed assertion is reported as a
BadPrecondition (for the assertion).

The property we wrote above is wrong: what we really intended to say was that after a correct guess that requests
all the funds, then no locked funds remain. Let us write a property that says that any wallet can recover the funds by
making such a guess. To program our strategy, we will need to read the secret password, and the value remaining in
the contract, from the contract model:

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

CM.anyActions_
w <- CM.forAllQ $ CM.elementsQ wallets
secret <- CM.viewContractState currentSecret
val <- CM.viewContractState gameValue
CM.action $ Guess w "" secret val
CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

After a random sequence of actions, we choose a random wallet and construct a correct guess that recovers all the
locked Ada to this wallet. But this property also fails!

> quickCheck $ forAllDL noLockedFunds prop_Game

*** Failed! Falsified (after 1 test and 2 shrinks):
BadPrecondition

[Witness (Wallet 1 :: Wallet)]
[Action (Guess (Wallet 1) "" "" 0)]
(GameModel {_gameValue = 0, _hasToken = Nothing, _currentSecret = ""})

Here QuickCheck has chosen the arbitrary sequence of actions to be empty, so the contract has not even been
locked–and of course, in that case, a Guess is not possible. To pass the test, our strategy must work in every sit-
uation. However, if the contract has not been locked, then there are no locked funds, so the assertion in this property
would pass without our doing anything at all. Perhaps we should only make a Guess if there are actually funds to be
recovered:

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

CM.anyActions_
w <- CM.forAllQ $ CM.elementsQ wallets
secret <- CM.viewContractState currentSecret
val <- CM.viewContractState gameValue
when (val > 0) $ do

CM.action $ Guess w "" secret val
CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

This is better, but testing the property still fails:

> quickCheck $ forAllDL noLockedFunds prop_Game

*** Failed! Falsified (after 1 test and 1 shrink):

(continues on next page)
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(continued from previous page)

BadPrecondition
[Do $ Lock (Wallet 1) "*******" 1,
Witness (Wallet 2 :: Wallet)]
[Action (Guess (Wallet 2) "" "*******" 1)]
(GameModel {_gameValue = 1, _hasToken = Just (Wallet 1), _currentSecret = "*******"}

→˓)

In this case we locked 1 Ada in the contract, chose wallet 2 to recover the funds, and then tried to make a correct
guess–but the precondition for Guess still failed. And this is no surprise: the wallet does not hold the game token.
This test case shows that, as part of our strategy for recovering the funds, we also need to give the game token to the
wallet that will make the guess.

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

CM.anyActions_
w <- CM.forAllQ $ CM.elementsQ wallets
secret <- CM.viewContractState currentSecret
val <- CM.viewContractState gameValue
when (val > 0) $ do

CM.action $ GiveToken w
CM.action $ Guess w "" secret val

CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

Now we expect the tests to pass:

> quickCheck $ forAllDL noLockedFunds prop_Game

*** Failed! Falsified (after 1 test):
BadPrecondition

[Do $ Lock (Wallet 1) "hello" 5,
Witness (Wallet 3 :: Wallet),
Do $ GiveToken (Wallet 3),
Do $ Guess (Wallet 3) "" "hello" 5]
[Assert "Locked funds should be zero"]
(GameModel {_gameValue = 5, _hasToken = Just (Wallet 3), _currentSecret = "hello"})

They do not! We can see from the last line that, in the final state, our model indeed says that there are still 5 Ada
locked in the contract. This is the effect of the Plutus.Contract.Test.ContractModel.Interface.
nextState function in our model, so let us inspect the relevant part of its code:

nextState (Guess w old new val) = do
correctGuess <- (old ==) <$> CM.viewContractState currentSecret
-- ...

Comparing carefully with the failed test, we see that our strategy is supplying the empty string as the old password
(the guess), and the correct password as the new one–so the guess is wrong, and the Ada was not recovered. Swapping
the two password arguments to Guess does, at last, make the tests pass.

For this simple contract, recovering the locked funds is easy–but as we have seen, writing a property that says that it
is always possible forces us to be precise about our strategy, and reveals anything we might have overlooked.
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Monitoring and tuning dynamic logic tests

The dynamic logic test we have developed only uses our recovery strategy if there are locked funds remaining af-
ter a random sequence of actions. How often does that happen? Given that tests contain many more guesses than
Lock actions, there is a risk that the contract is usually holding no funds before we even consider using our strategy.
To find out, we can Plutus.Contract.Test.ContractModel.Interface.monitor the contract model
during our tests. As in the Plutus.Contract.Test.ContractModel.Interface.monitoring method
of the Plutus.Contract.Test.ContractModel.Interface.ContractModel class, we can use any
of the QuickCheck operations for analyzing test cases, but instead of applying the Plutus.Contract.Test.
ContractModel.Interface.monitoring at every action in a test case, we can Plutus.Contract.
Test.ContractModel.Interface.monitor at selected points.

In this case, we choose to label test cases that actually invoke our fund recovery strategy:

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

CM.anyActions_
w <- CM.forAllQ $ CM.elementsQ wallets
secret <- CM.viewContractState currentSecret
val <- CM.viewContractState gameValue
when (val > 0) $ do

CM.monitor $ label "Unlocking funds"
CM.action $ GiveToken w
CM.action $ Guess w secret "" val

CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

With the addition of the Plutus.Contract.Test.ContractModel.Interface.monitor line,
QuickCheck tells us what proportion of our tests actually leave funds to recover:

> quickCheck $ forAllDL noLockedFunds prop_Game
+++ OK, passed 100 tests (31% Unlocking funds).

Actions (5112 in total):
49.24% GiveToken
48.81% Guess
1.96% Lock

We can see that around 30% of generated tests leave some Ada in the contract for our strategy to recover. This is a bit
low–it means that two thirds of our tests do not actually test the strategy. But it is easy to address: we can simply use
the dynamic logic to specify the initial Lock action explicitly, and generate larger amounts for the initial funds locked
in the game (lines 3-5 below):

noLockedFunds :: CM.DL GameModel ()
noLockedFunds = do

(w0, funds, pass) <- CM.forAllQ (CM.elementsQ wallets, CM.chooseQ (1, 10000), CM.
→˓elementsQ guesses)

CM.action $ Lock w0 pass funds
CM.anyActions_
w <- CM.forAllQ $ CM.elementsQ wallets
secret <- CM.viewContractState currentSecret
val <- CM.viewContractState gameValue
when (val > 0) $ do

CM.monitor $ label "Unlocking funds"
CM.action $ GiveToken w
CM.action $ Guess w secret "" val

CM.assertModel "Locked funds should be zero" $ CM.symIsZero . CM.lockedValue

With this addition, a much higher proportion of tests actually exercise our recovery strategy:
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> quickCheck $ forAllDL noLockedFunds prop_Game
+++ OK, passed 100 tests (74% Unlocking funds).

Actions (5198 in total):
49.75% GiveToken
48.33% Guess
1.92% Lock

More dynamic logic

Dynamic logic tests are much more expressive than we have seen hitherto. The Plutus.Contract.Test.
ContractModel.Interface.DL monad is an instance of Alternative, so we can write tests with random
control flow, weight choices suitably, and so on. For example, Plutus.Contract.Test.ContractModel.
Interface.anyActions, which generates a random sequence of actions of expected length n, is defined by

anyActions :: Int -> CM.DL s ()
anyActions n = CM.stopping

<|> CM.weight (1 / fromIntegral n)
<|> (CM.anyAction >> anyActions n)

This code makes a random choice between three alternatives, expressed using (<|>). The first two alternatives ter-
minate (and return ()), while the last alternative performs a random action followed by another random sequence
of actions. The second alternative is weighted by 1/n, so the third is chosen n times as often, resulting in an ex-
pected length of n actions. The first alternative is guarded by Plutus.Contract.Test.ContractModel.
Interface.stopping, which means it will be chosen only if the test case is ‘getting too long’; in this case
Plutus.Contract.Test.ContractModel.Interface.anyActions will generate an empty sequence.
We can exercise fine control over the way test cases are generated, including specifying strategies for bringing a long
test case to a close. See the documentation for more details.

Limitations

The tests we have developed here suffer from three main limitations:

• We test only via the off-chain contract endpoints

• We test under favourable assumptions on timing

• We don’t test for information leaks

What are the implications, and how can we address them?

Testing only via contract endpoints

We tested that the guessing game contract behaves as it should, provided transactions are submitted using the off-
chain contract code. But what if a malicious actor writes their own off-chain code, submitting transactions that the
contract’s own off-chain code cannot generate? Is it possible, for example, to steal the Ada locked by the game, without
submitting a guess? Our tests do not cover this.

One way to mitigate this problem is to add additional ‘attack’ endpoints to the contract under test, that carry out a
variety of conceivable attacks. Our contract model would then model these attack actions as no-ops, to represent the
fact that the attacks fail; our tests would then check that the attacks fail in all circumstances, and with all parameters.

If we think of the guessing game, not as a game, but instead as a contract that protects funds with a password, then we
might consider ‘guessing’ with the correct password as a correct withdrawal, and guessing with an incorrect password
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as an attack. Our model does test that these attacks always fail; this approach can be used in general to test that
contracts are robust against anticipated attacks.

Test assumptions on timing

Our tests wait for the transactions generated by an Plutus.Contract.Test.ContractModel.Interface.
Action to complete before performing the next Plutus.Contract.Test.ContractModel.Interface.
Action (because we inserted calls to delay into Plutus.Contract.Test.ContractModel.
Interface.perform, and Plutus.Contract.Test.ContractModel.Interface.wait into
Plutus.Contract.Test.ContractModel.Interface.nextState). In reality, different wallets may
perform actions simultaneously. This usually results in two or more transactions that try to spend the same UTXO,
leading all but the first to fail.

Endpoint calls that submit several transactions are even more problematic, because such a call may fail part way
through, leaving the blockchain in an intermediate, and possibly invalid state. Arguably, contracts should be written to
undo the effects of earlier transactions if later ones fail–although, as we saw, the Lock endpoint of the game contract
(which is implemented as two transactions) does not do this: a second call to Lock fails after the first transaction, and
leaves the blockchain in a state that the contract cannot handle.

It is possible to test this kind of behaviour in our framework, by not delaying before the next action, so that several
actions can be started in the same slot. Delays must then be included as an explicit Plutus.Contract.Test.
ContractModel.Interface.Action in test cases instead. However, modelling becomes considerably harder,
because the model must predict which transaction of several simultaneous ones succeeds, and must take into account
how many transactions each end-point call results in, and which slot each is expected to be commited in. It isn’t clear
that the extra modelling effort is really worthwhile.

Moreover, in reality transactions might be delayed, which means that endpoint calls that generate several transactions
might end up being interleaved in unexpected ways. The emulator doesn’t currently simulate this, and so these kinds
of tests cannot yet be run.

Testing for information leaks

We have tested that only a guess containing the correct secret can withdraw Ada from the game contract. So to steal
the money, an adversary must discover the secret. But recall that an adversary can access everything on the blockchain,
and also the contents of transactions.

There are least two serious bugs that the game contract could contain, that would permit an adversary to steal all the
money:

• The secret could be stored in plain text in the contract state, instead of encrypted. The contract state is stored on
the blockchain. The adversary could simply read the secret from the blockchain, and then make a correct guess
to steal the money.

• The secret might be stored in encrypted form on the blockchain, but Guess transactions might contain an
encrypted guess, rather than a plain text guess (as they do in this implementation). Then the adversary could
simply read the encrypted secret from the blockchain, and submit it in a guess transaction to steal the money.

Neither of these bugs would be detected by our tests, nor is it clear how they could be.

This test framework is a powerful tool for testing that contracts behave correctly, when used as intended–but users
should be aware of the limitations in this section, and be careful to avoid the pitfalls they expose.
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Further Examples

In addition to the model for the Game contract presented in this tutorial, there are also models for the Prism and the
Auction example contracts in the plutus-use-cases project.

5.2.4 Testing Plutus Contracts with Contract Models

Introduction

In this tutorial we will see how to test Plutus contracts with contract models, using the framework provided by
Plutus.Contract.Test.ContractModel This framework generates and runs tests on the Plutus emulator,
where each test may involve a number of emulated wallets, each running a collection of Plutus contracts, all submitting
transactions to an emulated blockchain. Once the user has defined a suitable model, then QuickCheck can generate and
run many thousands of scenarios, taking the application through a wide variety of states, and checking that it behaves
correctly in each one. Once the underlying contract model is in place, then the framework can check user-defined
properties specific to the application, generic properties such as that no funds remain locked in contracts for ever, and
indeed both positive and negative tests—where positive tests check that the contracts allow the intended usages, and
negative tests check that they do not allow the unintended ones.

The ContractModel framework is quite rich in features, but we will introduce them gradually and explain how they
can best be used.

Basic Contract Models

Example: A Simple Escrow Contract

We begin by showing how to construct a model for a simplified escrow contract, which can be found in Plutus.
Contracts.Tutorial.Escrow. This contract enables a group of wallets to make a predetermined exchange
of tokens, for example selling an NFT for Ada. There are two endpoints, a Plutus.Contracts.Tutorial.
Escrow.pay endpoint, and a Plutus.Contracts.Tutorial.Escrow.redeem endpoint. Each wallet pays
in its contribution to the contract using the Plutus.Contracts.Tutorial.Escrow.pay endpoint, and once
all the wallets have done so, then any wallet can trigger the predetermined payout using the Plutus.Contracts.
Tutorial.Escrow.redeem endpoint.

For simplicity, we will begin by testing the contract for a fixed set of predetermined payouts. These are defined by
the Plutus.Contracts.Tutorial.Escrow.EscrowParams, a type exported by the escrow contract, and
which is actually passed to the on-chain validators. Plutus.Contract.Test provides ten emulated wallets for
use in tests, Plutus.Contract.Test.w1 to Plutus.Contract.Test.w10; in this case we will use five of
them:

testWallets :: [Wallet]
testWallets = [w1, w2, w3, w4, w5]

Let us decide arbitrarily that Plutus.Contract.Test.w1 will receive a payout of 10 Ada, and Plutus.
Contract.Test.w2 will receive a payout of 20, and define an Plutus.Contracts.Tutorial.Escrow.
EscrowParams value to represent that:

escrowParams :: EscrowParams d
escrowParams =

EscrowParams
{ escrowTargets =

[ payToPaymentPubKeyTarget (mockWalletPaymentPubKeyHash w1) (Ada.adaValueOf
→˓10)

(continues on next page)
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(continued from previous page)

, payToPaymentPubKeyTarget (mockWalletPaymentPubKeyHash w2) (Ada.adaValueOf
→˓20)

]
}

The Contract Model Type

In order to generate sensible tests, and to decide how they should behave, we need to track the expected state of the
system. The first step in defining a contract model is to define a type to represent this expected state. We usually need
to refine it as the model evolves, but for now we keep things simple.

In this case, as wallets make payments into the escrow, we will need to keep track of how much each wallet has paid
in. So let us define an EscrowModel type that records these contributions. Once the contributions reach the targets,
then the escrow may be redeemed, so let us keep track of these targets in the model too. We define

data EscrowModel = EscrowModel { _contributions :: Map Wallet Value.Value
, _targets :: Map Wallet Value.Value
} deriving (Eq, Show, CM.Generic)

makeLenses ''EscrowModel

Note that we use lenses to access the fields of the model. This is why the field names begin with an underscore; the
makeLenses call creates lenses called just contributions and targets for these fields, which we will use to
access and modify the fields below.

We turn this type into a contract model by making it an instance of the Plutus.Contract.Test.
ContractModel.Interface.ContractModel class:

instance ContractModel EscrowModel where ...

The rest of the contract model is provided by defining the methods and associated data types of this class.

What contracts shall we test?

In general, a contract model can be used to test any number of contracts, of differing types, running in any of the
emulated wallets. But we need to tell the framework which contracts we are going to test, and we need a way for
the model to refer to each contract instance, so that we can invoke the right endpoints. We do so using a Plutus.
Contract.Test.ContractModel.Interface.ContractInstanceKey, but since different models will
be testing different collections of contracts, then this type is not fixed, it is defined as part of each model, as an
associated type of the Plutus.Contract.Test.ContractModel.Interface.ContractModel class.

In this case only one kind of contract is involved in the tests, the escrow contract, but there will be many instances of
it, one running in each wallet. To identify a contract instance, a Plutus.Contract.Test.ContractModel.
Interface.ContractInstanceKey just has to record the wallet it is running in, we only need one constructor
in the type. In general there will be one constructor for each type of contract instance in the test.

data ContractInstanceKey EscrowModel w s e params where
WalletKey :: Wallet -> CM.ContractInstanceKey EscrowModel () EscrowSchema

→˓EscrowError ()

Note that the Plutus.Contract.Test.ContractModel.Interface.ContractInstanceKey type is
a GADT, so it tracks not only the model type it belongs to, but also the type of the contract instance it refers to.
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The framework also needs to be able to show and compare Plutus.Contract.Test.ContractModel.
Interface.ContractInstanceKey, so you might expect that we would add a deriving clause to this type
definition. But a deriving clause is actually not supported here, because the type is a GADT, so instead we have
to give separate ‘standalone deriving’ declarations outside the Plutus.Contract.Test.ContractModel.
Interface.ContractModel instance:

deriving instance Eq (CM.ContractInstanceKey EscrowModel w s e params)
deriving instance Show (CM.ContractInstanceKey EscrowModel w s e params)

Defining Plutus.Contract.Test.ContractModel.Interface.ContractInstanceKey is only part
of the story: we also have to tell the framework how to interpret the contract instance keys, in particular

1. which contract instances to start

2. which emulated wallets to run them in

3. which actual contract each contract instance should run.

We do so by defining three methods in the Plutus.Contract.Test.ContractModel.Interface.
ContractModel class:

initialInstances = [StartContract (WalletKey w) () | w <- testWallets]

instanceWallet (WalletKey w) = w

instanceContract _ WalletKey{} _ = testContract

The first line above tells the test framework to start a contract instance in each of the test wallets (with contract
parameter ()), the second line tells the framework which wallet each contract key should run in, and the third line
tells the framework which contract to run for each key–in this case, the same testContract in each wallet. Spec.
Tutorial.Escrow does not actually export a complete concrete, only contract endpoints, so for the purposes of
the test we just define a contract that allows us to invoke those endpoints repeatedly:

testContract = selectList [ void $ payEp escrowParams
, void $ redeemEp escrowParams
] >> testContract

What actions should tests perform?

The type of Actions

The final type we need to define as part of a contract model tells the framework what actions to include in gener-
ated tests. This is defined as another associated datatype of the Plutus.Contract.Test.ContractModel.
Interface.ContractModel class, and in this case, we will just need actions to invoke the two contract end-
points:

data Action EscrowModel = Pay Wallet Integer
| Redeem Wallet -- ^ Refund Wallet

deriving (Eq, Show, CM.Generic)

The framework needs to be able to show and compare Plutus.Contract.Test.ContractModel.
Interface.Action too, but in this case we can just add a deriving clause to the definition.
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Performing Actions

QuickCheck will generate sequences of Plutus.Contract.Test.ContractModel.Interface.Action
as tests, but in order to run the tests, we need to specify how each action should be performed.
This is done by defining the Plutus.Contract.Test.ContractModel.Interface.perform method
of the Plutus.Contract.Test.ContractModel.Interface.ContractModel class, which maps
Plutus.Contract.Test.ContractModel.Interface.Action to a computation in the emulator.
Plutus.Contract.Test.ContractModel.Interface.perform takes several parameters besides the
Plutus.Contract.Test.ContractModel.Interface.Action to perform, but for now we ig-
nore all but the first, whose purpose is to translate a Plutus.Contract.Test.ContractModel.
Interface.ContractInstanceKey, used in the model, into a Plutus.Trace.Emulator.Types.
ContractHandle, used to refer to a contract instance in the emulator. The Plutus.Contract.
Test.ContractModel.Interface.perform method is free to use any Plutus.Trace.Emulator.
EmulatorTrace operations, but in practice we usually keep it simple, interpreting each Plutus.Contract.
Test.ContractModel.Interface.Action as a single call to a contract endpoint. This gives QuickCheck
maximal control over the interaction between the tests and the contracts. In this case, we just call either the Plutus.
Contracts.Tutorial.Escrow.pay or the Plutus.Contracts.Tutorial.Escrow.redeem end-
point.

perform h _ _ a = case a of
Pay w v -> do
Trace.callEndpoint @"pay-escrow" (h $ WalletKey w) (Ada.adaValueOf $

→˓fromInteger v)
CM.delay 1

Redeem w -> do
Trace.callEndpoint @"redeem-escrow" (h $ WalletKey w) ()
CM.delay 1

Notice that we do need to allow each Plutus.Contract.Test.ContractModel.Interface.Action
time to complete, so we include a Plutus.Contract.Test.ContractModel.Interface.delay to tell
the emulator to move on to the next slot after each endpoint call. Of course we are free not to do this, but then tests
will submit many endpoint calls per slot, and fail because the endpoints are not ready to perform them. This is not the
most interesting kind of test failure, and so we avoid it by delaying an appropriate number of slots after each endpoint
call. The number of slots we need to wait varies from contract to contract, so we usually determine these numbers
experimentally. Exactly the same problem arises in writing unit tests, of course.

Modelling Actions

Remember that we need to track the real state of the system using the contract model state? We defined a type for this
purpose:

data EscrowModel = EscrowModel { _contributions :: Map Wallet Value.Value
, _targets :: Map Wallet Value.Value
} deriving (Eq, Show, CM.Generic)

makeLenses ''EscrowModel

We need to tell the framework what the effect of each Plutus.Contract.Test.ContractModel.
Interface.Action is expected to be, both on wallet contents, and in terms of the model state. We
do this by defining the Plutus.Contract.Test.ContractModel.Interface.nextState method of
the Plutus.Contract.Test.ContractModel.Interface.ContractModel class, which just takes
an Plutus.Contract.Test.ContractModel.Interface.Action as a parameter, and interprets it in
the Plutus.Contract.Test.ContractModel.Interface.Spec monad, provided by the Plutus.
Contract.Test.ContractModel.Interface.ContractModel framework.
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nextState a = case a of
Pay w v -> do
withdraw w (Ada.adaValueOf $ fromInteger v)
contributions %= Map.insertWith (<>) w (Ada.adaValueOf $ fromInteger v)
wait 1

Redeem w -> do
targets <- viewContractState targets
sequence_ [ deposit w v | (w, v) <- Map.toList targets ]
contributions .= Map.empty
wait 1

You can see that the Plutus.Contract.Test.ContractModel.Interface.Spec monad allows us to
withdraw and deposit values in wallets, so that the framework can predict their expected contents, and also to
read and update the model state using the lenses generated from its type definition. For a Pay action, we with-
draw the payment from the wallet, and record the contribution in the model state, using (%=) to update the
contributions field. For a Redeem action, we read the targets from the model state (using Plutus.
Contract.Test.ContractModel.Interface.viewContractState and the lens generated from the
type definition), and then make the corresponding payments to the wallets concerned. In both cases we tell
the model to Plutus.Contract.Test.ContractModel.Interface.wait one slot, corresponding to
the Plutus.Contract.Test.ContractModel.Interface.delay call in Plutus.Contract.Test.
ContractModel.Interface.perform; this is necessary to avoid the model and the emulator getting out of
sync.

We also have to specify the initial model state at the beginning of each test: we just record that no contributions have
been made yet, along with the targets we chose for testing with.

initialState = EscrowModel { _contributions = Map.empty
, _targets = Map.fromList [ (w1, Ada.adaValueOf 10)

, (w2, Ada.adaValueOf 20)
]

}

Given these definitions, the framework can predict the expected model state after any sequence of Plutus.
Contract.Test.ContractModel.Interface.Action.

Generating Actions

The last step, before we can actually run tests, is to tell the framework how to generate random actions. We do this by
defining the Plutus.Contract.Test.ContractModel.Interface.arbitraryActionmethod, which
is just a QuickCheck generator for the Plutus.Contract.Test.ContractModel.Interface.Action
type. It gets the current model state as a parameter, so we can if need be adapt the generator depending on the state,
but for now that is not important: we just choose between making a payment from a random wallet, and invoking
Plutus.Contracts.Tutorial.Escrow.redeem from a random wallet. Since we expect to need several
payments to fund a redemption, we generate Pay actions a bit more often than Redeem ones.

arbitraryAction _ = frequency $ [ (3, Pay <$> elements testWallets <*> choose (1,
→˓30))

, (1, Redeem <$> elements testWallets) ]

Strictly speaking the framework now has enough information to generate and run tests, but it is good practice to define
shrinking every time we define generation; we just defined a generator for actions, so we should define a shrinker
too. We do so by defining the Plutus.Contract.Test.ContractModel.Interface.shrinkAction
method, which, like the QuickCheck shrink function, just returns a list of smaller Plutus.Contract.Test.
ContractModel.Interface.Action to try replacing an action by when a test fails. It is always worth defining
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a shrinker: the small amount of effort required is repaid very quickly, since failed tests become much easier to under-
stand.

In this case, as in most others, we can just reuse the existing shrinking for those parts of an Plutus.Contract.
Test.ContractModel.Interface.Action that make sense to shrink. There is no sensible way to shrink a
wallet, really, so we just shrink the amount in a payment.

shrinkAction _ (Pay w n) = [Pay w n' | n' <- shrink n]
shrinkAction _ _ = []

With this definition, failing test cases will be reported with the minimum payment value that causes a failure.

Running tests and debugging the model

We are finally ready to run some tests! We do still need to define a property that we can call QuickCheck with,
but the Plutus.Contract.Test.ContractModel.Interface.ContractModel framework provides a
standard one that we can just reuse. So we define

prop_Escrow :: CM.Actions EscrowModel -> Property
prop_Escrow = CM.propRunActions_

The important information here is in the type signature, which tells QuickCheck which contract model we want to
generate and run tests for.

A failing test

Once the property is defined, we are ready to test–and a test fails immediately! This is not unexpected–it is quite rare
that a model and implementation match on the first try, so we should expect a little debugging–of the model–before we
start to find interesting bugs in contracts. When models are written after the implementation, as in this case, then the
new code–the model code–is likely to be where bugs appear first.

Looking at the test output, the first thing QuickCheck reports is the failed test case:

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck prop_Escrow

*** Failed! Assertion failed (after 7 tests and 2 shrinks):
Actions
[Redeem (Wallet 5)]

Here we see what generated tests looks like: they are essentially lists of Plutus.Contract.Test.
ContractModel.Interface.Action, performed in sequence. In this case there is only one Plutus.
Contract.Test.ContractModel.Interface.Action: wallet 5 just attempted to redeem the funds in the
contract.

The next lines of output tell us why the test failed:

Expected funds of W[2] to change by
Value (Map [(,Map [("",20000000)])])

but they did not change
Expected funds of W[1] to change by

Value (Map [(,Map [("",10000000)])])
but they did not change

Remember we defined the expected payout to be 10 Ada to Plutus.Contract.Test.w1, and 20 Ada
to Plutus.Contract.Test.w2. Our model says (in Plutus.Contract.Test.ContractModel.
Interface.nextState) that when we perform a Redeem then the payout should be made (in Lovelace, not
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Ada, which is why the numbers are a million times larger than those in the model). But the wallets did not get the
money–which is hardly surprising since no payments at all have been made to the contract, so there is no money to
disburse.

The remaining output displays a log from the failing contract instance, and the emulator log, both containing the line

Contract instance stopped with error: RedeemFailed NotEnoughFundsAtAddress

This is an error thrown by the off-chain Plutus.Contracts.Tutorial.Escrow.redeem endpoint code,
which (quite correctly) checks the funds available, and fails since there are not enough.

Positive testing with preconditions

We now have a failing test, that highlights a discrepancy between the model and the implementation–and it is the
model that is wrong. The question is how to fix it, and there is a choice to be made. Either we could decide that the
Plutus.Contract.Test.ContractModel.Interface.nextState function in the model should check
whether sufficient funds are available, and if they are not, predict that no payments are made. Or perhaps, we should
restrict our tests so they do not attempt to use ``Redeem`` when it should not succeed.

Both choices are reasonable. The first alternative is usually called negative testing–we deliberately test error situations,
and make sure that the implementation correctly detects and handles those errors. The second alternative is positive
testing (or “happy path” testing), when we make sure that the implementation provides the functionality that it should,
when the user makes correct use of its API.

It is usually a good idea to focus on positive testing first–indeed, good positive testing is a prerequisite for good
negative testing, because it enables us to get the system into a wide variety of interesting states (in which to perform
negative tests). So we shall return to negative testing later, and focus–in this section–on making positive testing work
well.

To do so, we have to restrict test cases, so that they do not include Redeem actions, when there are insufficient
funds in the escrow. We restrict actions by defining the Plutus.Contract.Test.ContractModel.
Interface.precondition method of the Plutus.Contract.Test.ContractModel.Interface.
ContractModel class: any Plutus.Contract.Test.ContractModel.Interface.Action for
which Plutus.Contract.Test.ContractModel.Interface.precondition returns False will
not be included in any generated test. The Plutus.Contract.Test.ContractModel.Interface.
precondition method is also given the current Plutus.Contract.Test.ContractModel.
Interface.ModelState as a parameter, so that it can decide to accept or reject an Plutus.Contract.
Test.ContractModel.Interface.Action based on where it appears in a test.

In this case, we want to allow a Redeem action only if there are sufficient funds in the escrow, so we just need to
compare the contributions made so far to the targets:

precondition s a = case a of
Redeem _ -> (s ^. contractState . contributions . to fold)

`geq`
(s ^. contractState . targets . to fold)

_ -> True

In this code, s is the entire model state maintained by the framework (including wallet contents, slot num-
ber etc), but it contains the “contract state”, which is the state we have defined ourselves, the EscrowModel.
The lens contractState . contributions . to fold extracts the EscrowModel, extracts the
contributions field from it, and then combines all the Plutus.V1.Ledger.Value.Value using fold.
When we apply it to s using (^.), we get the total value of all contributions. Likewise, the second lens
application computes the combined value of all the targets. If the contributions exceed the targets, then the
Redeem is allowed; otherwise, it will not be included in the test. Once we define Plutus.Contract.
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Test.ContractModel.Interface.precondition, then it has to be defined for every form of Plutus.
Contract.Test.ContractModel.Interface.Action, so we just add a default branch that returns True.

Note: We can’t use (>=) to compare Plutus.V1.Ledger.Value.Value; there is no Ord instance. That
is because some Plutus.V1.Ledger.Value.Value are incomparable, such as one Ada and one NFT, which
would break our expectations about Ord. That is why we have to compare them using Plutus.V1.Ledger.
Value.geq instead.

With this precondition, the failing test we have seen can no longer be generated, and will not appear again in our
quickCheck runs.

A second infelicity in the model

Adding a precondition for Redeem prevents the previous failing test from being generated, but it does not make the
tests pass: it just allows QuickCheck to reveal the next problem in the model. Running tests again, we see:

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck prop_Escrow

*** Failed! Assertion failed (after 4 tests and 5 shrinks):
Actions
[Pay (Wallet 2) 0]

This time the test just consists of a single Pay action, making a payment of zero (!) Ada to the the contract.

Note: It may seem surprising that the test tries to make a zero payment, given that the generator we saw above only
generates payments in the range 1 to 30 Ada. But remember that the failing test cases we see are not necessarily
freshly generated, they may also have been shrunk. In this case, the zero is a result of shrinking: the shrinker we saw
can certainly shrink payments to zero, and the precondition for Pay allows that. . . it’s always True. And so, a zero
payment can appear in tests. If we wanted to prevent this, the correct way would be to tighten the precondition of Pay.

The next part of the output explains why the test failed:

Expected funds of W[2] to change by
Value (Map [])

but they changed by
Value (Map [(,Map [("",-2000000)])])

a discrepancy of
Value (Map [(,Map [("",-2000000)])])

In other words, the model expected that a payment of zero would not affect the funds held by the calling wallet, but in
fact, the wallet lost 2 Ada.

Why did this happen? In this case, the emulator log that follows provides an explanation:

.

.

.
[INFO] Slot 1: W[2]: Balancing an unbalanced transaction:

Tx:
Tx 2dc052b47a1faeacc0f50b99359990302885a34104df0109576597cc490b8a98:
{inputs:
collateral inputs:
outputs:
- Value (Map [(,Map [("",2000000)])]) addressed to

(continues on next page)
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(continued from previous page)

ScriptCredential:
→˓bcf453ff769866e23d14d5104c36ce4da0ff5bcbed23c622f46b94f1 (no staking credential)

mint: Value (Map [])
fee: Value (Map [])
mps:
signatures:
validity range: Interval {ivFrom = LowerBound NegInf True, ivTo =

→˓UpperBound PosInf True}
data:
"\128\164\244[V\184\141\DC19\218#\188L<u\236m2\148<\b\DEL%\v\134\EM<\167

→˓"}
Requires signatures:
Utxo index:
Validity range:
(-? , +?)

.

.

.

We see the transaction submitted by the contract, and we can see from its outputs that it is paying 2 Ada to the script,
even though we specified a payment of zero. The reason for this is that the Cardano blockchain requires a minimum
Ada amount in every transaction output, currently 2 Ada. It is therefore impossible to make a payment of zero Ada
to the script–and the Plutus libraries avoid this by adding Ada to each output, if necessary, to meet the minimum
requirement. It is these 2 Ada that the wallet has lost.

This is not really a bug in the escrow contract: it’s a fundamental limitation enforced by the blockchain itself. Therefore
we must adapt our model to allow for it. Once again we have a choice: we could specify that every Pay action costs
at least the minimum Ada, even if the Plutus.Contract.Test.ContractModel.Interface.Action
contains a lower payment, or we can restrict Pay actions to amounts greater than or equal to the minimum. We choose
the latter, because it is simpler to express–we just tighten the precondition for Pay:

precondition s a = case a of
Redeem _ -> (s ^. contractState . contributions . to fold)

`geq`
(s ^. contractState . targets . to fold)

Pay _ v -> Ada.adaValueOf (fromInteger v) `geq` Ada.toValue minAdaTxOutEstimated

Now this failure can no longer appear.

Note: It’s debatable whether the contract’s behaviour is actually buggy or not. We decided to accept it, and exclude
payments smaller than 2 Ada from our tests. But of course, a user of the contract might attempt to make a payment of,
say, 1 Ada–nothing prevents that. Such a user will see their wallet debited with 2 Ada, and may be surprised by that
behaviour. Arguably the contract should explicitly reject payments below the minimum, rather than silently increase
them. So this failing test does expose this issue.
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A third infelicity in the model, and a design issue

Now that we have reasonable preconditions for each Plutus.Contract.Test.ContractModel.
Interface.Action in a test, we can expect to see more interesting failures. And indeed, the tests still fail,
but now with a test case that combines payment and redemption:

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck prop_Escrow

*** Failed! Assertion failed (after 8 tests and 5 shrinks):
Actions
[Pay (Wallet 4) 11,
Pay (Wallet 5) 20,
Redeem (Wallet 5)]

Expected funds of W[5] to change by
Value (Map [(,Map [("",-20000000)])])

but they changed by
Value (Map [(,Map [("",-19000000)])])

a discrepancy of
Value (Map [(,Map [("",1000000)])])

Here we made two payments, totalling 31 Ada, which is exactly one Ada more than the combined targets (recall
our targets are 10 Ada to Plutus.Contract.Test.w1 and 20 Ada to Plutus.Contract.Test.w2). Then
Plutus.Contract.Test.w5 redeemed the escrow, and ended up with 1 Ada too much (last line). That extra Ada
is, of course, the extra unnecessary Ada that was paid to the script in the previous action.

This raises the question: what should happen if an escrow holds more funds than are needed to make the target pay-
ments? The designers of this contract decided that any surplus should be paid to the wallet submitting the Plutus.
Contracts.Tutorial.Escrow.redeem transaction. Since this is part of the intended behaviour of the con-
tract, then our model has to reflect it. We can do so with a small extension to the Plutus.Contract.Test.
ContractModel.Interface.nextState function in the model:

nextState a = case a of
Pay w v -> ...
Redeem w -> do

targets <- viewContractState targets
sequence_ [ deposit w v | (w, v) <- Map.toList targets ]
contribs <- viewContractState contributions -- NEW
let leftoverValue = fold contribs <> inv (fold targets) -- NEW
deposit w leftoverValue -- NEW
contributions .= Map.empty
wait 1

The extra code just computes the total contributions and the surplus, and deposits the surplus in the calling wallet.

Now, at last, the tests pass!

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck prop_Escrow
+++ OK, passed 100 tests.

By default, quickCheck runs 100 tests, which is enough to reveal easily-caught bugs such as those we have seen, but
far too few to catch really subtle issues. So at this point, it’s wise to run many more tests–the number is limited only
by your patience and the speed of the emulator:

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck . withMaxSuccess 1000 $
→˓prop_Escrow
+++ OK, passed 1000 tests.
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Analysing the distribution of tests

Once tests are passing, then the framework displays statistics collected from the running tests. These statistics give us
important information about the effectiveness of our tests; a risk with any automated test case generation is that, since
we do not usually inspect the running tests, we may not notice if almost all of them are trivial.

The contract model framework gathers some basic statistics by default, and can be configured to gather more, but
for now we just consider the built-in ones. After each successful test run, we see a number of tables, starting with a
distribution of the actions performed by tests:

Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck . withMaxSuccess 1000 $
→˓prop_Escrow
+++ OK, passed 1000 tests.

Actions (25363 in total):
75.894% Pay
12.771% Redeem
11.335% WaitUntil

Here we ran 1,000 tests, and as we see from the table, around 25,000 actions were generated. So, on average, each test
case consisted of around 25 actions.

Of those actions, three quarters were Pay actions, and 10-15% were Redeem. This is not unreasonable–we decided
when we wrote the Plutus.Contract.Test.ContractModel.Interface.Action generator to generate
more payments than redemptions. The remaining actions are WaitUntil actions, inserted by the framework, which
simply wait a number of slots to test for timing dependence; we shall return to them later, but can ignore them for now.
Thus this distribution looks quite reasonable.

The second table that appears tells us how often a generated Plutus.Contract.Test.ContractModel.
Interface.Action could not be included in a test, because its precondition failed.

Actions rejected by precondition (360 in total):
87.8% Redeem
12.2% Pay

We can see that 360 actions–in addition to the 25,000 that were included in tests–were generated, but discarded
because their preconditions were not true. This does represent wasted generation effort, although rejecting 360 out of
over 25,000 actions is not really a serious problem–especially given that test case generation is so very much faster
than the emulator.

Nevertheless, we can see that the vast majority of rejected actions were Redeem actions, and this is because a Redeem
is not allowed until sufficient payments have been made–but our generator produces them anyway.

We can, of course, change this, to generate Redeem actions only when redemption is actually possible:

arbitraryAction s = frequency $ (3, Pay <$> elements testWallets <*> choose (1,
→˓30)) :

[ (1, Redeem <$> elements testWallets)
| (s ^. CM.contractState . contributions . to fold)

→˓ -- NEW
`Value.geq` -

→˓- NEW
(s ^. CM.contractState . targets . to fold)

→˓ -- NEW
]

Measuring the distribution again after this change, we see that only valid Redeem actions are now generated; the only
discarded actions are Pay actions.
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Prelude Spec.Tutorial.Escrow Test.QuickCheck Main> quickCheck . withMaxSuccess 1000 $
→˓prop_Escrow
+++ OK, passed 1000 tests.

Actions (25693 in total):
76.717% Pay
13.035% Redeem
10.248% WaitUntil

Actions rejected by precondition (650 in total):
100.0% Pay

The main disadvantage of making this change is that it limits the tests that can be generated, if the precondition of
Redeem should be changed in the future. In particular, when we move on to negative testing, then we will want to test
invalid attempts to redeem the escrow also. Once the generator is changed like this, then relaxing the precondition is
no longer enough to introduce invalid calls. For this reason it could be preferable to keep the possibility of generation
invalid calls alongside the generator for valid calls, but to assign the potentially-invalid generator a much lower weight.

We will discuss the remaining tables in a later section.

Exercises

You can find the final version of the contract model discussed in this section in Spec.Tutorial.Escrow1, in the
plutus-apps repo.

1. Try running the code in ghci. You can do so by starting a nix shell, and starting ghci using

cabal repl plutus-use-cases-test

Then import QuickCheck and the contract model:

import Test.QuickCheck
import Spec.Tutorial.Escrow1

and run tests using

quickCheck prop_Escrow

The tests should pass, and you should see tables showing the distribution of tested actions, and so on.

2. Try removing the preconditions for Pay and Redeem, and reinserting them one by one. Run quickCheck
after each change, and inspect the failing tests that are generated.

3. Try removing the line

deposit w leftoverValue

from the Plutus.Contract.Test.ContractModel.Interface.nextState function, and verify
that tests fail as expected.

4. Try removing one of the lines

wait 1

from the Plutus.Contract.Test.ContractModel.Interface.nextState function (so that the
model and the implementation get out of sync). What happens when you run tests?
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5. This model does generate Pay actions that are discarded by the precondition. Adjust the generator so that
invalid Pay actions are no longer generated, and run quickCheck to verify that this is no longer the case.

Parameterising Models and Dynamic Contract Instances

One of the unsatisfactory aspects of the tests developed in the previous section is that they always pay 10 Ada to wallet
1, and 20 Ada to wallet 2. What if the contract only works for certain amounts, or what if it only works with exactly
two beneficiary wallets? Of course, we would like to generate a random set of payment targets for each test. Such a
generator is easy to write:

arbitraryTargets :: Gen [(Wallet,Integer)]
arbitraryTargets = do

ws <- sublistOf testWallets
vs <- infiniteListOf $ choose (1,30)
return $ zip ws vs

but it is a little more intricate to make the model use these generated targets.

There are two problems to overcome:

1. The generated targets are an important part of a test case, so they must be included in the test case somehow.
But a test case is just a list of actions. So where do we put the targets?

2. The running contracts need to know what the targets are–but our model just contains a static
list of contract instances in the test (Plutus.Contract.Test.ContractModel.Interface.
initialInstances). How can we pass the generated targets to each running contract instance?

Solve these two problems, and we can test escrows with arbitrary payout targets. The techniques we learn will be
applicable in many other situations.

Adding an initial action, and test case phases

The first problem is quite easy to solve, in principle. The generated payment targets are an important part of a test
case, and a test case is just a list of actions, therefore the generated payment targets must be included in one or more of
the actions. Quite simply, any generated data in a contract model test must be part of an action. In this case, we just
decide that every test should begin with an Init action, that specifies the targets to be used in this test case. So we
must extend the Plutus.Contract.Test.ContractModel.Interface.Action type to include Init:

data Action EscrowModel = Init [(Wallet, Integer)] -- NEW!
| Redeem Wallet
| Pay Wallet Integer

deriving (Eq, Show, CM.Generic)

We must also ensure that Init actions only appear as the first action of a test case, and that every test case starts
with an Init action. We restrict the form of test cases using preconditions, so this means that we must refine
the Plutus.Contract.Test.ContractModel.Interface.precondition function so that the Init
precondition only holds at the beginning of a test case, and the other operations’ preconditions only hold after an
Init has taken place.

However, the Plutus.Contract.Test.ContractModel.Interface.precondition method is only
given the action and the contract state as parameters, which means in turn that we must be able to tell whether or
not we are at the beginning of the test case, just from the model state. So we have to add a field to the model, to keep
track of where in a test case we are. In this simple case we could just add a boolean initialised, but we will be
a little more general and say that a test case is made up of a number of phases, in this case just two, Initial and
Running:
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data EscrowModel = EscrowModel { _contributions :: Map Wallet Value.Value
, _targets :: Map Wallet Value.Value
, _phase :: Phase -- NEW!
} deriving (Eq, Show, CM.Generic)

Now we can specify that at the beginning of a test case we are in the Initial phase, and there are no targets:

initialState = EscrowModel { _contributions = Map.empty
, _targets = Map.empty
, _phase = Initial
}

and that when we model the Init action, we update both the phase and the targets accordingly:

nextState a = case a of
Init wns -> do

phase .= Running
targets .= Map.fromList [(w, Ada.adaValueOf (fromInteger n)) | (w,n) <- wns]

...

We have to specify how to perform an Init action also, but in this case it exists only to initialise the model state with
generated targets, so performing it need not do anything:

perform h _ _ a = case a of
Init _ -> do

return ()
...

Now we can add a precondition for Init, and restrict the other actions to the Running phase only:

precondition s a = case a of
Init _ -> currentPhase == Initial
Redeem _ -> currentPhase == Running && ...
Pay _ v -> currentPhase == Running && ...
where currentPhase = s ^. contractState . phase

It only remains to generate Init actions, using the generator for targets that we saw above. We can take the phase
into account, and generate an Init action only at the start of the test case, and other actions only in the Running
phase.

arbitraryAction s
| s ^.contractState . phase == Initial

= Init <$> arbitraryTargets
| otherwise

= ...as before...

Note: Here we ensure that we always generate test cases that begin with Init, but this is not enough to ensure that
every test case we run begins with Init. Remember that failed tests are always shrunk, and the first thing the shrinker
will try is to discard the leading Init action (if that still results in a failing test, which it probably will). The only
way to prevent shrinking from discarding the leading Init is for the preconditions to require it to be there. This is
why we focussed on writing the preconditions first: they are more important.

As a matter of principle, when we write a generator, we also write a shrinker, which just requires a one-line addition
to the Plutus.Contract.Test.ContractModel.Interface.shrinkAction function:
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shrinkAction _ (Init tgts) = map Init (shrinkList (\(w,n)->(w,) <$> shrink n) tgts)

We cannot shrink wallets, which is why we can’t simply apply shrink to the list of targets, but using the
shrinkList function from Test.QuickCheck we can easily write a shrinker that will discard list elements
and shrink the target values.

Dynamic contract instances

At this point we can generate tests that begin by initialising the escrow targets randomly, but we cannot yet run them
successfully. If we try, we see failures like this:

*** Failed! Assertion failed (after 11 tests and 5 shrinks):
Actions
[Init [],
Redeem (Wallet 1)]

Contract instance log failed to validate:
...
Slot 1: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Contract instance stopped with error: RedeemFailed NotEnoughFundsAtAddress
...

Here we started a test with an empty list of targets, and tried to redeem the escrow, but failed because there were ‘not
enough funds’. Why not? Because the contracts we are running still expect the fixed targets that we started with; we
have not yet passed our generated targets to the contract instances under test.

Recall the contract we are testing:

testContract = selectList [ void $ payEp escrowParams
, void $ redeemEp escrowParams
] >> testContract

It invokes the contract endpoints with the fixed set of Plutus.Contracts.Tutorial.Escrow.
EscrowParams we defined earlier. Clearly we need to parameterise the contract on these Plutus.Contracts.
Tutorial.Escrow.EscrowParams instead:

testContract :: EscrowParams Datum -> Contract () EscrowSchema EscrowError ()
testContract params = selectList [ void $ payEp params

, void $ redeemEp params
] >> testContract params

Now the question is: how do we pass this parameter to each testContract as we start them?

Recall the way we started contracts in the previous section. We defined the contracts to start at the beginning of a test
in the Plutus.Contract.Test.ContractModel.Interface.initialInstances method:

initialInstances = [CM.StartContract (WalletKey w) () | w <- testWallets]

Each contract is specified by a Plutus.Contract.Test.ContractModel.Interface.
StartContract, containing not only a contract instance key, but also a parameter–in this case (), since
we did not need to pass any generated values to testContract. Now we do need to, so we must replace that ()
with escrow parameters generated from our payment targets. Moreover, we can no longer start the contracts at the
beginning of the test–we must see the Init action first, so that we know what the generated targets are. To do so, we
redefine

initialInstances = []
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and instead add a definition of the Plutus.Contract.Test.ContractModel.Interface.
startInstances method:

startInstances _ (Init wns) =
[CM.StartContract (WalletKey w) (escrowParams wns) | w <- testWallets]

startInstances _ _ = []

where the escrow parameters are now constructed from our generated targets:

escrowParams :: [(Wallet, Integer)] -> EscrowParams d
escrowParams tgts =

EscrowParams
{ escrowTargets =

[ payToPaymentPubKeyTarget (mockWalletPaymentPubKeyHash w) (Ada.adaValueOf
→˓(fromInteger n))

| (w,n) <- tgts
]

}

The effect of this is to start the contracts just before the Init action; in fact, using this mechanism, we can start
contracts dynamically at any point in a test case.

Note: We should be careful to avoid reusing the same contract instance key more than once, though, since this may
lead to confusing results.

You may wonder why we don’t simply start new contract instances in the Plutus.Contract.Test.
ContractModel.Interface.perform method instead. The answer is the framework needs to track
the running contract instances, and using Plutus.Contract.Test.ContractModel.Interface.
startInstances makes this explicit.

The Plutus.Contract.Test.ContractModel.Interface.StartContract just specifies the
Plutus.Contract.Test.ContractModel.Interface.ContractInstanceKey to be started;
we define the actual contract to start in the Plutus.Contract.Test.ContractModel.Interface.
instanceContract method, which receives the contract parameter from Plutus.Contract.Test.
ContractModel.Interface.StartContract as its last argument. So we can just define

instanceContract _ WalletKey{} params = testContract params

and our work is (almost) done. The last step is just to update the type of WalletKey, since it includes the type of the
parameter that Plutus.Contract.Test.ContractModel.Interface.StartContract accepts.

data ContractInstanceKey EscrowModel w s e params where
WalletKey :: Wallet -> CM.ContractInstanceKey EscrowModel () EscrowSchema

→˓EscrowError (EscrowParams Datum)

Now, at last, our extended model is complete.
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Running our extended tests; another design issue

We can now run our new tests, and, as so often happens when the scope of QuickCheck tests is extended, they do not
pass. Here is an example of a failure:

Actions
[Init [(Wallet 5,0)],
Redeem (Wallet 4)]

Expected funds of W[4] to change by
Value (Map [])

but they changed by
Value (Map [(,Map [("",-2000000)])])

a discrepancy of
Value (Map [(,Map [("",-2000000)])])

Expected funds of W[5] to change by
Value (Map [])

but they changed by
Value (Map [(,Map [("",2000000)])])

a discrepancy of
Value (Map [(,Map [("",2000000)])])

Test failed.

In this case the generated target just specifies that wallet 5 should receive 0 Ada–a slightly odd target, perhaps, but not
obviously invalid. Since the total of all targets is 0 Ada, then the target is already met, and wallet 4 attempts to redeem
the escrow. We might expect the effect to be a no-op–and this is what our model predicts–but it is not what happens.
Instead, wallet 4 pays two Ada to wallet 5!

The reason this happens is the blockchain rule that every transaction output must contain at least 2 Ada. When wallet
4 attempts to redeem the escrow, then the off-chain code attempts to create a transaction with an output paying 0 Ada
to wallet 5, but that is increased to 2 Ada to make the transaction valid. Then when the transaction is balanced, the 2
Ada is taken from the submitting wallet.

Is this a bug in the contract? It is certainly an inconsistency with the Plutus.Contract.Test.
ContractModel.Interface.nextState function in the model, and we could modify that function to reflect
the actual transfers of Ada that the contract performs. But these transfers were surely not intentional: a more reason-
able approach is to say that target payments that are too small to be accepted by the blockchain are invalid; such targets
should not be chosen.

We can make our tests pass by tightening the precondition of Init so that targets below the minimum are not accepted:

precondition s a = case a of
Init tgts-> currentPhase == Initial

&& and [Ada.adaValueOf (fromInteger n) `geq` Ada.toValue
→˓minAdaTxOutEstimated | (w,n) <- tgts]

...

This demonstrates that the contract works as expected, provided we don’t specify targets less than the minimum, but
nothing prevents a user of the contract from specifying such targets–and we know that the contract code will accept
them, and deliver surprising results in those cases. Arguably all the contract endpoints should check that the specified
targets are valid, and raise an error if they are not. This would prevent the creation of invalid escrows, rather than
generating unexpected behaviour when they are redeemed.

Thus these failing tests do suggest a way in which the contract implementation can be improved, even if the failing
cases are fairly unlikely in practice.

Note: QuickCheck was able to find this bug because our generator for target payments includes invalid values; we
chose values in the range 1 to 31, where 1 is invalid (and shrinking reduced the 1 to a 0 in the failing case that was
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reported). It is a good thing we did not ensure, from the start, that only valid target values could be generated–had we
done so, we would not have discovered this anomalous behaviour.

In general, it is a good idea for generators to produce, at least occasionally, every kind of input that a user can actually
supply, even if some of them are invalid (and may be filtered out by preconditions). Doing so enables this kind of
strange behaviour to be discovered.

Exercises

1. You will find the code presented here in Spec.Tutorial.Escrow2, with the exception of the last precon-
dition we discussed for Init. Run the tests using

quickCheck prop_Escrow

and make sure you understand how they fail.

2. Make your own copy of the code, and add the tighter precondition for Init. Verify that the tests then pass.

3. An alternative explanation for the problem might have been that a target of zero should not be allowed (and
perhaps the contract implementation should interpret a target of zero by not creating a transaction output at
all). Change the precondition of Init so that it only excludes targets of zero, rather than any target below the
minimum. Verify that the tests still fail, and make sure you understand the (slightly more complex) failure.

4. There are quite a few steps involved in introducing these dynamically chosen targets. You can practice these
steps by taking the code from Spec.Tutorial.Escrow1, which uses fixed targets, and following the steps
outlined in this tutorial to turn it into a copy of Spec.Tutorial.Escrow2.

Testing “No Locked Funds” with Dynamic Logic

So far, we have tested that a contract’s actual transfers of tokens are consistent with the model. That is, nothing goes
wrong–or to put it bluntly, nobody steals your money. This is an example of a safety property. But when we use
smart contracts, this is not the only kind of property we care about. Very often, we also want to be certain that we
can eventually reach some kind of goal state–an example of a liveness property. In particular, it would be bad if
tokens were to be trapped in a contract for ever, with no possibility of recovering them. The Cardano model certainly
allows this. . . imagine a UTXO whose verifier always returns False. . . and so it is our responsibility to ensure that
contracts do not fall into this trap. Not only does nothing go wrong, but something good is always possible. Not only
does no-one steal your money, but you can always recover it yourself.

We call these properties “no locked funds” properties, because that is usually what we want to test: that we can always
reach a state in which all tokens have been recovered from the contracts under test. Of course, there is no general way
to recover tokens held by a contract, so we cannot expect QuickCheck to find a way to reach this goal automatically;
instead, we specify a strategy for recovering funds, and what we test is that the given strategy always works.

Writing and testing properties using Dynamic Logic

We specify this kind of property using dynamic logic. This part of the contract testing framework is inspired by
dynamic logic for reasoning about programs, but it can be thought of just as a way of writing test scenarios, in which
we mix random generation, explicit actions, and assertions. We write such scenarios in the Plutus.Contract.
Test.ContractModel.Interface.DL monad; for example, here is a scenario that first performs a random
sequence of actions, then invokes a finishing strategy, and finally asserts that no tokens remain locked in contracts.
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finishEscrow :: DL EscrowModel ()
finishEscrow = do

anyActions_
finishingStrategy w1
assertModel "Locked funds are not zero" (symIsZero . lockedValue)

Here Plutus.Contract.Test.ContractModel.Interface.assertModel lets us include an assertion
about the contract model state, Plutus.Contract.Test.ContractModel.Interface.lockedValue is
a function provided by the framework that computes the total value held by contracts, and Plutus.Contract.
Test.ContractModel.Interface.symIsZero checks that this is zero. The value is returned here as a
Plutus.Contract.Test.ContractModel.Symbolics.SymValue, but for now it can be thought of just
as a normal Plutus Plutus.V1.Ledger.Value.Value with an extra type wrapper.

This scenario just tests that the given finishing strategy always succeeds in recovering all tokens from contracts, no
matter what actions have been performed beforehand. The finishing strategy itself is written in the same monad. For
example, if we think we should use a Redeem action to recover the tokens, then we can define

finishingStrategy :: Wallet -> DL EscrowModel ()
finishingStrategy w = do

currentPhase <- viewContractState phase
when (currentPhase /= Initial) $ do

action $ Redeem w

Of course, since the strategy must work in any state, including the initial one, then we do have to check that the escrow
has been initialised before we attempt to Redeem.

Note: These test scenarios are very flexible, and can be used for other purposes too. For example, we could write a
test scenario that fixes the escrow targets, thus undoing the generalization we made in the previous section:

fixedTargets :: DL EscrowModel ()
fixedTargets = do

action $ Init [(w1,10),(w2,20)]
anyActions_

Note that generated actions are always appropriate for the current state, so here Plutus.Contract.Test.
ContractModel.Interface.anyActions_ will pick up generating the test case from the point after the
escrow targets are initialised.

We can use dynamic logic to express everything from unit tests to full random generation (by just specifying Plutus.
Contract.Test.ContractModel.Interface.anyActions_ as the scenario). But for now, we focus on
testing “no locked funds” properties.

Now, dynamic logic just specifies a generator for tests to perform; we still need to specify how to perform those tests.
Usually, we just reuse the existing property we have already written, which runs the test case on the emulator and
performs the usual checks. In this case, we can define

prop_FinishEscrow :: Property
prop_FinishEscrow = CM.forAllDL finishEscrow prop_Escrow

Then we can run the tests by passing the property to quickCheck, as usual:

> quickCheck prop_FinishEscrow

*** Failed! Falsified (after 1 test and 3 shrinks):
BadPrecondition
[Do $ Init [(Wallet 2,2)]]

(continues on next page)
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[Action (Redeem (Wallet 1))]
(EscrowModel {_contributions = fromList [],

_targets = fromList [(Wallet 2,Value (Map [(,Map [("",
→˓2000000)])]))],

_phase = Running})

BadPrecondition
[Do $ Var 0 := Init [(Wallet 2,2)]]
Some (Redeem (Wallet 1))

The property fails, which is not surprising: our “finishing strategy” is quite simplistic, and not yet expected to work.
But let us inspect the error message. The test failed because of a bad precondition, after running the sequence

Init [(Wallet 2,2)]

So we set up a target to pay wallet 2 a sum of 2 Ada. Then we tried to apply our finishing strategy, which is just for
wallet 1 to issue a Redeem request:

Redeem (Wallet 1)

This wasn’t possible, because the precondition of Redeem wasn’t satisfied. The message also shows us the model
state–we have set up the escrow targets successfully, but there are no contributions, and the Redeem precondition says
that the contributions must cover the targets before Redeem is possible. So of course, it doesn’t work.

But the counterexample does show us what we need to do to make Redeem possible: we need to pay in sufficient
contributions to cover the targets. So that suggests a refined finishing strategy:

finishingStrategy :: Wallet -> DL EscrowModel ()
finishingStrategy w = do

currentPhase <- viewContractState phase
when (currentPhase /= Initial) $ do

currentTargets <- viewContractState targets
currentContribs <- viewContractState contributions
let deficit = fold currentTargets <> inv (fold currentContribs)
when (deficit `gt` Ada.adaValueOf 0) $

action $ Pay w $ round $ Ada.getAda $ max minAdaTxOutEstimated $ Ada.
→˓fromValue deficit

action $ Redeem w

We read the contributions and targets from the contract state, compute the remaining deficit, and if the deficit is
positive, then we make a payment to cover it. After this, a Redeem should be successful. And indeed, testing the
property passes: this finishing strategy works.

> quickCheck . withMaxSuccess 1000 $ prop_FinishEscrow
+++ OK, passed 1000 tests.

Actions (51925 in total):
73.483% Pay
14.278% Redeem
10.315% WaitUntil
1.924% Init
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Digression: revisiting a design decision

In section A third infelicity in the model, and a design issue above, we discussed the situation in which contributors
pay in more to the escrow than is needed to meet the targets. The actual contract allows that, and so do we in our
model; as a consequence we had to specify where the surplus funds end up on redemption (in the wallet that invokes
Redeem). But there is another approach we could have taken: we could simply have said that Redeem requires the
contributions and targets to match exactly, by strengthening the precondition:

precondition s (Redeem _) =
currentPhase == Running

&& fold (s ^. contractState . contributions) == fold (s ^. contractState . targets)

This does make prop_Escrow pass:

> quickCheck prop_Escrow
+++ OK, passed 100 tests.

Actions (2845 in total):
82.81% Pay
13.78% WaitUntil
3.30% Init
0.11% Redeem

Actions rejected by precondition (870 in total):
88.3% Redeem
10.8% Pay
0.9% Init

But should we be satisfied with this? There are warning signs in the statistics that QuickCheck collects:

1. We have tested Redeem an extremely small number of times.

2. A high proportion of generated Redeem actions were discarded by the precondition.

The explanation for this is that we can now only include Redeem in a test case if the previous (random) payments
have hit the target exactly, and this is very unlikely. Moreover, once we have overshot the target, then further random
payments cannot help.

We could add a stronger precondition to Pay, that forbids payments taking us over the target, and that would result
in a better distribution of actions. But it is not a realistic solution, because at the end of the day, there is no way to
prevent someone making a payment to a script on the Cardano blockchain. Making a payment to a contract does not
require the contract’s approval.

So there is a problem here, but when we test prop_Escrow, then it is revealed only by careful inspection of the
generated statistics–the property does not fail.

On the other hand, when we test prop_FinishEscrow, then it fails immediately:

> quickCheck prop_FinishEscrow

*** Failed! Falsified (after 5 tests and 6 shrinks):
BadPrecondition
[Do $ Init [],
Do $ Pay (Wallet 2) 2]

[Action (Redeem (Wallet 1))]
(EscrowModel {_contributions = fromList [(Wallet 2,Value (Map [(,Map [("",

→˓2000000)])]))],
_targets = fromList [],
_phase = Running})

(continues on next page)
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BadPrecondition
[Do $ Var 0 := Init [],Do $ Var 3 := Pay (Wallet 2) 2]
Some (Redeem (Wallet 1))

The counterexample sets up an escrow with an empty list of targets (which may seem odd, but is allowed, and tells
us that no particular targets are needed to make the property fail). Then it makes a payment to the escrow, thus
overshooting the targets. Finally, we try to use the given finishing strategy–which just attempts to use Redeem, and
fails because the strong precondition we wrote does not allow it.

In this case, not only does the given finishing strategy fail, but the bug cannot be fixed: there is no possible finishing
strategy that works. Once we have overshot the targets, there is no way to return to a state in which Redeem is
possible! And that is why the contract authors did not follow this path: had they done so, then an attacker would be
able to ‘brick’ an escrow contract just by making an unexpected payment to it.

Fair’s fair: Unilateral strategies

We saw above how to test that a finishing strategy succeeds in recovering all the tokens. But not all strategies are
created equal. For example, suppose you use an escrow contract to buy an NFT. You place your funds in the escrow,
but before the seller can place the NFT there, they get a better offer. Now the seller will never place the NFT in the
escrow–and neither can the buyer–and so the buyer’s funds will be locked for ever, even though there is a way (using
the NFT) to recover them.

This little story shows that there is a need for each wallet to be able to recover their “fair share” of the funds in the
contract, without any other wallet’s cooperation. And the contract model framework provides a way of testing this too.

The idea is to provide two strategies, one that recovers all the tokens from contracts, and is also interpreted to de-
fine each wallet’s “fair share”, and a second strategy that can be followed by any single wallet, and recovers that
wallet’s tokens. We call this kind of strategy a unilateral strategy; it is defined in the Plutus.Contract.Test.
ContractModel.Interface.DL monad in just the same way as the strategies we saw earlier, but only a single
wallet is allowed to perform actions. Indeed, this is why we gave finishingStrategy a wallet as a parameter: it
defines the unilateral strategy for that wallet. Since the strategy uses Redeem, which actually pays out all the targets,
then we can reuse it as the general strategy too, just by choosing a wallet to perform it (and we chose wallet 1 above).

The framework lets us package the general and unilateral strategies together, into a “no locked funds proof”:

noLockProof :: NoLockedFundsProof EscrowModel
noLockProof = defaultNLFP

{ nlfpMainStrategy = finishingStrategy w1
, nlfpWalletStrategy = finishingStrategy }

Note: There are other components in a Plutus.Contract.Test.ContractModel.Interface.
NoLockedFundsProof, which we will see later; we can ignore them for now, but we do need to take suitable
default values from Plutus.Contract.Test.ContractModel.Interface.defaultNLFP in the defini-
tion above.

and we can test them together using Plutus.Contract.Test.ContractModel.Interface.
checkNoLockedFundsProof

prop_NoLockedFunds :: Property
prop_NoLockedFunds = CM.checkNoLockedFundsProof noLockProof
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> quickCheck prop_NoLockedFunds

*** Failed! Falsified (after 1 test and 5 shrinks):
DLScript

[Do $ Init [(Wallet 4,2)]]

Unilateral strategy for Wallet 4 should have gotten it at least
SymValue {symValMap = fromList [], actualValPart = Value (Map [(,Map [("",

→˓2000000)])])}
but it got

SymValue {symValMap = fromList [], actualValPart = Value (Map [])}

The property actually fails, because if all we do is create a target that wallet 4 should receive 2 Ada, then wallet 4’s
unilateral strategy is unable to recover that–even though, when wallet 1 follows the strategy, then wallet 4 does receive
the money.

What happens here is that the general strategy, which is just the same strategy followed by wallet 1, does pay out to
wallet 4, and so we define wallet 4’s “fair share” to be 2 Ada. But this isn’t really right, because since no Ada have
been paid into the contract, then there are no tokens to disburse. Indeed, if anything, the “general” strategy is unfair
to wallet 1, which has to stump up 2 Ada in this situation so that the escrow can be redeemed. So this test failure does
reveal a fairness problem, even if the victim is really wallet 1 rather than wallet 4.

We will see how to fix this problem in the next section. In the meantime, to summarize, defining a Plutus.
Contract.Test.ContractModel.Interface.NoLockedFundsProof requires us

1. to define a general strategy that can recover all the tokens from the contracts under test, and moreover implies a
fair share of the tokens for each wallet in any state (for example, a fair share of the profits-so-far of any trading
contract),

2. to define a unilateral strategy for each wallet, that can recover that wallet’s fair share of the tokens from any
state, without cooperation from any other wallet.

Fixing the contract: refunds

The fundamental problem with the finishing strategy we have developed so far, is that in order to recover tokens
already held by the contract, we may need to pay in even more tokens! This seems a poor design. It would make
far more sense, in the event that the contract is not followed to completion, to refund contributions to the wallets that
made them. And indeed, the actual implementation of the contract supports a Plutus.Contracts.Tutorial.
Escrow.refund endpoint as well.

To add refunds to our model, we need to add a new action

data Action EscrowModel = Init [(Wallet, Integer)]
| Redeem Wallet
| Pay Wallet Integer
| Refund Wallet -- NEW!

deriving (Eq, Show, CM.Generic)

and add it to Plutus.Contract.Test.ContractModel.Interface.nextState, Plutus.
Contract.Test.ContractModel.Interface.precondition, Plutus.Contract.Test.
ContractModel.Interface.perform, and Plutus.Contract.Test.ContractModel.
Interface.arbitraryAction:

nextState (Refund w) = do
v <- viewContractState $ contributions . at w . to fold
contributions %= Map.delete w
deposit w v

(continues on next page)

5.2. Tutorials 81



Plutus Tools SDK User Guide, Release 1.0.0

(continued from previous page)

wait 1

precondition s (Refund w) =
currentPhase == Running

&& w `Map.member` (s ^. contractState . contributions)
where currentPhase = s ^. contractState . phase

perform h _ _ (Refund w) = do
Trace.callEndpoint @"refund-escrow" (h $ WalletKey w) ()
delay 1

arbitraryAction s
...

= frequency $ ... ++
[ (1, Refund <$> elements testWallets) ]

(In the Plutus.Contract.Test.ContractModel.Interface.nextState clause, the first line uses a
more complex lens to extract the contributions, select the value for wallet w, if present, and then pass the resulting
Maybe Value to fold, thus returning zero if there was no contribution, and the value itself if there was). We also
have to extend the testContract to include the refund endpoint:

testContract :: EscrowParams Datum -> Contract () EscrowSchema EscrowError ()
testContract params = selectList [ void $ payEp params

, void $ redeemEp params
, void $ refundEp params -- NEW!
] >> testContract params

With these additions, prop_Escrow still passes, but now tests refunds as well:

> quickCheck prop_Escrow
+++ OK, passed 100 tests.

Actions (2625 in total):
66.44% Pay
12.46% WaitUntil
9.64% Redeem
7.96% Refund
3.50% Init

Actions rejected by precondition (478 in total):
85.8% Refund
12.6% Pay
1.7% Init

We can see that Refund is tested almost as often as Redeem, although many refunds are rejected by the precondition
(which requires that there actually is a contribution to refund). This isn’t a big deal, though, because the overall
proportion of rejected actions is low (15%), and sufficiently many Refund actions are being tested.

The payoff, though, is that we can now define a far better finishing strategy: the general strategy will just refund all
the contributions, and the unilateral strategies will claim a refund for the wallet concerned.

finishingStrategy :: CM.DL EscrowModel ()
finishingStrategy = do

contribs <- CM.viewContractState contributions
CM.monitor (tabulate "Refunded wallets" [show . Map.size $ contribs])
sequence_ [CM.action $ Refund w | w <- testWallets, w `Map.member` contribs]

(continues on next page)
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walletStrategy :: Wallet -> CM.DL EscrowModel ()
walletStrategy w = do

contribs <- CM.viewContractState contributions
when (w `Map.member` contribs) $ CM.action $ Refund w

Note: Here we use Plutus.Contract.Test.ContractModel.Interface.monitor to gather statistics
on the number of wallets receiving refunds during the finishing strategy, just to make sure, for example, that it is not al-
ways zero. We place such monitoring in the general strategy, not the wallet-specific ones, because the general strategy
is invoked exactly once per test, while the wallet-specific ones may be invoked a variable–and unpredictable–number
of times. This makes statistics gathered in the wallet-specific strategies harder to interpret.

We put these strategies together into a Plutus.Contract.Test.ContractModel.Interface.
NoLockedFundsProof:

noLockProof :: CM.NoLockedFundsProof EscrowModel
noLockProof = CM.defaultNLFP

{ CM.nlfpMainStrategy = finishingStrategy
, CM.nlfpWalletStrategy = walletStrategy }

and run tests:

> quickCheck prop_NoLockedFunds
+++ OK, passed 100 tests.

Actions (31076 in total):
65.211% Pay
11.794% WaitUntil
10.117% Redeem
9.506% Refund
1.847% Init
1.525% Unilateral

Refunded wallets (100 in total):
30% 2
23% 1
17% 4
16% 3
13% 0
1% 5

Now the tests pass–each wallet can indeed recover its own fair share of tokens–and moreover we test each action fairly
often, and the number of refunded wallets has a reasonable-looking distribution.
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Exercises

You will find the code presented in this section in Spec.Tutorial.Escrow3.

1. Strengthen the precondition of Redeem to require the contributions and targets to match exactly, as discussed
in Digression: revisiting a design decision. Verify that prop_Escrow passes and prop_FinishEscrow
fails. Now, add a precondition to Pay to disallow payments that take the contributions over the target.

1. Test prop_Escrow, and make sure it passes; have you achieved a better distribution of actions in tests?

2. Test prop_FinishEscrow; does it pass now?

2. The code provided uses the poor finishing strategy based on Redeem. Verify that prop_NoLockedFunds
fails, and replace the strategy with the better one described above (you will find the code in comments in the
file). Verify that prop_NoLockedFunds passes now.

Do not be surprised if testing prop_NoLockedFunds is considerably slower than testing
prop_FinishEscrow. The latter runs the emulator only once per test, while the former must run it
repeatedly to test each wallet’s unilateral strategy.

3. Sometimes a wallet which is targetted to receive funds might do better to complete the contributions and redeem
the escrow, rather than refund its own contribution. Implement this idea as a per-wallet strategy, and see whether
prop_NoLockedFunds still passes. Add a call of Plutus.Contract.Test.ContractModel.
Interface.monitor to your strategy to gather statistics on how often Redeem is used instead of Refund.

Taking Time into Account

In the last section we added refunds to our tests; now a client can pay into an escrow, and claim a refund of their
contribution freely–but this doesn’t really correspond to the intention of an escrow contract. In reality, an escrow con-
tract should have a deadline for payments and redemption, with refunds permitted only after the deadline has passed.
In fact, the real escrow contract, in Plutus.Contracts.Escrow, provides such a deadline: the main difference
between this and the simplified contract we have tested so far, Plutus.Contracts.Tutorial.Escrow, is that
the latter omits the deadline and associated checks.

In this section, we’ll switch to testing the real contract, which we can achieve just by changing the import in our model
to be the real contract. (As usual, you can find the code presented in this section in Spec.Tutorial.Escrow4).

Slots and POSIXTime

Just changing the import leads to a compiler warning: the Plutus.Contracts.Escrow.EscrowParams type,
which is passed to the contract under test, has a new field Plutus.Contracts.Escrow.escrowDeadline,
and so far, our code does not initialise it. We will generate the deadlines, so that they vary from test to test, but there
is a slight mismatch to overcome first. In a contract model we measure time in slots, but the Plutus.Contracts.
Escrow.escrowDeadline field is not a slot number, it is a Plutus.V1.Ledger.Time.POSIXTime. So
while we shall generate the deadline as a slot number (for convenience in the model), we must convert it to a Plutus.
V1.Ledger.Time.POSIXTime before we can pass it to the contract under test.

To do so, we need to know when slot 0 happens in POSIX time, and how long the duration of each slot is. These
are defined in a Cardano.Node.Emulator.TimeSlot.SlotConfig, a type defined in Cardano.Node.
Emulator.TimeSlot. In principle the slot configuration might vary, but we will use the default values for testing
(by using def from Data.Default as our configuration. Putting all this together, we can add a deadline to our
Plutus.Contracts.Escrow.EscrowParams as follows:

escrowParams :: Slot -> [(Wallet, Integer)] -> EscrowParams d
escrowParams s tgts =

(continues on next page)
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EscrowParams
{ escrowTargets =

[ payToPaymentPubKeyTarget (mockWalletPaymentPubKeyHash w) (Ada.adaValueOf
→˓(fromInteger n))

| (w,n) <- tgts
]

, escrowDeadline = scSlotZeroTime def + POSIXTime (getSlot s * scSlotLength def)
→˓ -- NEW!!!

}

Note: If you are familiar with the POSIXTime type from Data.Time.Clock.POSIX, then beware that this is not
the same type. That type has a resolution of picoseconds, while Plutus uses its own Plutus.V1.Ledger.Time.
POSIXTime type with a resolution of milliseconds.

Initialising the deadline

The deadline, like the escrow targets, is fixed for each test, so it makes sense to add the deadline as a new field to
the Init action–recall that it is the Init action that starts the contract instances under test, and so must supply
the deadline as part of the Plutus.Contracts.Escrow.EscrowParams. So we add the deadline slot to this
action

data Action EscrowModel = Init Slot [(Wallet, Integer)] -- NEW!!!
| Redeem Wallet
| Pay Wallet Integer
| Refund Wallet

deriving (Eq, Show, CM.Generic)

and pass it to the contracts in the Plutus.Contract.Test.ContractModel.Interface.
startInstances method:

startInstances _ (Init s wns) =
[CM.StartContract (WalletKey w) (escrowParams s wns) | w <- testWallets]

Just as we record the escrow targets in the model state, so we will need to include the deadline as part of the model, so
we extend our model type

data EscrowModel =
EscrowModel

{ _contributions :: Map Wallet Value.Value
, _targets :: Map Wallet Value.Value
, _refundSlot :: Slot -- NEW!!!
, _phase :: Phase
} deriving (Eq, Show, CM.Generic)

and record the deadline in our model state transition:

nextState (Init s wns) = do
phase .= Running
targets .= Map.fromList [(w, Ada.adaValueOf (fromInteger n)) | (w,n) <- wns]
refundSlot .= s -- NEW!!!

It just remains to generate deadline slots (we choose positive integers), and shrink them (by reusing integer shrinking):
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arbitraryAction s
| s ^. CM.contractState . phase == Initial
= Init <$> (Slot . getPositive <$> arbitrary) <*> arbitraryTargets

shrinkAction _ (Init s tgts) = map (Init s) (shrinkList (\(w,n)->(w,)<$>shrink n)
→˓tgts)

++ map (`Init` tgts) (map Slot . shrink . getSlot $ s)
→˓ -- NEW!!!

Now we are ready to run tests.

Modelling the passage of time

We can now run tests, but they do not pass:

> quickCheck prop_Escrow

*** Failed! Assertion failed (after 5 tests and 7 shrinks):
Actions
[Init (Slot {getSlot = 0}) [],
Pay (Wallet 1) 2]

Expected funds of W[1] to change by
Value (Map [(,Map [("",-2000000)])])

but they did not change
Test failed.
Emulator log:
[INFO] Slot 0: TxnValidate
→˓ee3a44b98e0325e19bc6be1e6f25cdb269301666a3473758296e96cd7ea9a851
[INFO] Slot 1: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Contract instance started
[INFO] Slot 1: 00000000-0000-4000-8000-000000000001 {Wallet W[2]}:

Contract instance started
...

We tried to pay 2 Ada from wallet 1, but the payment did not take effect. Notice that the generated deadline is slot
zero, though; in other words, the deadline passed before we started the test. This might seem surprising, since we
generated the deadline as a positive integer (and zero does not count as positive), but it is the result of shrinking. If we
don’t want to test a deadline of slot zero, then we must strengthen the precondition of Init to prevent it.

Noting that the contract instances do not start until slot one, let us require the deadline slot to be greater than that–at
least slot two. When we add this to the precondition then tests still fail, but the shrunk counterexample is different:

> quickCheck prop_Escrow

*** Failed! Assertion failed (after 2 tests and 5 shrinks):
Actions
[Init (Slot {getSlot = 2}) [],
WaitUntil (Slot {getSlot = 2}),
Pay (Wallet 3) 2]

Expected funds of W[3] to change by
Value (Map [(,Map [("",-2000000)])])

but they did not change
Test failed.

This test case makes the problem easier to see: it

1. first, initializes the deadline to slot 2
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2. then, waits until slot 2,

3. and finally, attempts a payment, which does not go through.

The second action, WaitUntil, is one we have not seen in counterexamples previously; it only appears when timing
is important to provoke a failure. In this case it’s now clear what the problem is: the contract does not allow payments
after the deadline. So the next step is to encode this in our model.

Note: WaitUntil actions are inserted automatically into test cases by the framework, to explore timing dependence.
It is possible to control the probability of a WaitUntil action, and the distribution of the slots that we wait for, but
it is often not necessary–the default behaviour is often good enough.

The contract model framework automatically keeps track of the current slot number for us, so we could write a
precondition for Pay that refers explicitly to the slot number. However, all that really matters is whether or not the
deadline has passed–and probably other parts of the model will depend on this too. So it is simpler to check for this
in one place, and then just refer to it elsewhere in the model.

Now we can benefit from our choice earlier to introduce a phase field in the model: hitherto it has only distinguished
initialization from running the test, but now we can add a new phase: Refunding

data Phase = Initial | Running | Refunding deriving (Eq, Show, CM.Generic)

The idea is that when the deadline passes, we move into the Refunding phase, and we can refer to the current phase
in preconditions. In fact, our preconditions already refer to the phase, so with this change then Pay and Redeem will
be restricted to take place before the deadline. All we have to do is to adjust the precondition for Refund, which
should of course be restricted to after the deadline:

precondition s a = case a of
Init s tgts -> currentPhase == Initial

&& s > 1
&& and [Ada.adaValueOf (fromInteger n) `Value.geq` Ada.toValue

→˓minAdaTxOutEstimated | (_,n) <- tgts]
Redeem _ -> currentPhase == Running

&& fold (s ^. CM.contractState . contributions) `Value.geq` fold (s ^.
→˓ CM.contractState . targets)

Pay _ v -> currentPhase == Running
&& Ada.adaValueOf (fromInteger v) `Value.geq` Ada.toValue

→˓minAdaTxOutEstimated
Refund w -> currentPhase == Refunding -- NEW!!!

&& w `Map.member` (s ^. CM.contractState . contributions)
where currentPhase = s ^. CM.contractState . phase

One question remains: where do we change the phase? Changing the phase changes the model state, but
not in response to an Plutus.Contract.Test.ContractModel.Interface.Action: it doesn’t mat-
ter whether or not an action is performed on the deadline, the phase must change anyway. This means that
we cannot change the phase in the Plutus.Contract.Test.ContractModel.Interface.nextState
function, because this is invoked only when actions are performed. We need to be able to change the
contract state in response to the passage of time. We can do this by defining the Plutus.Contract.
Test.ContractModel.Interface.nextReactiveState method of the Plutus.Contract.Test.
ContractModel.Interface.ContractModel class.

This method is called every time the slot number advances in the model (although not necessarily every slot–slot
numbers can jump during a test). In this case all we need to do is compare the new slot number with the deadline, and
move to the Refunding phase if appropriate:
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nextReactiveState slot = do
deadline <- CM.viewContractState refundSlot
when (slot >= deadline) $ phase .= Refunding

Now prop_Escrow passes.

Monitoring and the distribution of tests

Testing prop_Escrow generates some interesting statistics:

> quickCheck prop_Escrow
+++ OK, passed 100 tests.

Actions (2291 in total):
62.03% WaitUntil
27.37% Pay
3.71% Redeem
3.62% Init
3.27% Refund

Actions rejected by precondition (11626 in total):
70.437% Pay
23.757% Refund
5.746% Redeem
0.060% Init

In comparison with previous versions of this property, we can see from the first table that there are many more
WaitUntil actions in these tests (previously they were around 10% of the tested actions). Moreover, we can see that
many more generated actions were rejected by their precondition: we rejected over 11,000 actions, while generating
2291 that were included in tests. Rejecting so many actions is undesirable: not only does it waste testing time, but
there is a risk that the distribution of accepted actions is quite different from that of generated actions, which can lead
to ineffective testing.

But why do we see this behaviour? It is because once the deadline has passed, then neither Pay nor Redeem is
possible; when we generate these actions, then they will always be rejected by their preconditions. Moreover, after the
deadline then we can Refund each wallet at most once. Once the deadline has passed, and all the contributions have
been refunded, then the preconditions allow no further actions–except WaitUntil. And so, test case generation will
choose WaitUntil, over and over again, and this is why so many of them appear in our tests.

The following tables tell us more about the passage of time in our tests:

Wait interval (1421 in total):
28.85% <10
25.83% 10-19
23.15% 20-29
15.76% 30-39
5.77% 40-49
0.63% 50-59

Wait until (1421 in total):
14.07% 100-199
12.03% 1000-1999
9.29% 200-299
8.94% 300-399
7.67% 400-499
...

(continues on next page)
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2.32% 2000-2999
...

The first table shows us how long we waited at each individual occurrence of WaitUntil: mostly under 30 slots, but
up to 59 slots at a maximum. The second table shows us which slot numbers we waited until: we can see that many
tests ran for several hundred slots, and indeed, some ran for over 2000 slots.

Luckily, waiting is cheap, but since we are performing fewer useful actions in each test, then we should probably run
more tests overall for the same level of confidence in our code.

No locked funds?

We still need to test that we can recover all tokens from the escrow, and do so fairly. Recall our previous finishing
strategy:

finishingStrategy :: DL EscrowModel ()
finishingStrategy = do

contribs <- viewContractState contributions
monitor (tabulate "Refunded wallets" [show . Map.size $ contribs])
sequence_ [action $ Refund w | w <- testWallets, w `Map.member` contribs]

If we just use this as it is, it will fail. As before, we begin by testing prop_FinishEscrow, before we worry about
unilateral strategies for individual wallets:

> quickCheck prop_FinishEscrow

*** Failed! Falsified (after 5 tests and 5 shrinks):
BadPrecondition
[Do $ Init (Slot {getSlot = 3}) [],
Do $ Pay (Wallet 3) 2]

[Action (Refund (Wallet 3))]
(EscrowModel {_contributions = fromList [(Wallet 3,Value (Map [(,Map [("",

→˓2000000)])]))],
_targets = fromList [],
_refundSlot = Slot {getSlot = 3},
_phase = Running})

In this test we set the deadline to slot 3, make a payment, and then the finishing strategy attempts to refund the
payment. . . in slot two. It doesn’t work: the precondition forbids a refund in that slot. So we have to adapt our
finishing strategy, which must simply wait until the deadline before refunding the contributions.

finishingStrategy :: CM.DL EscrowModel ()
finishingStrategy = do

contribs <- CM.viewContractState contributions
CM.monitor (tabulate "Refunded wallets" [show . Map.size $ contribs])
waitUntilDeadline -- NEW!!!
sequence_ [CM.action $ Refund w | w <- testWallets, w `Map.member` contribs]

To wait until the deadline, we use Plutus.Contract.Test.ContractModel.Interface.
waitUntilDL; since this fails if we try to wait until a slot in the past, then we have to check the Plutus.
Contract.Test.ContractModel.Interface.currentSlot (maintained by the model) before we
decide whether or not to wait.

waitUntilDeadline :: CM.DL EscrowModel ()
waitUntilDeadline = do

(continues on next page)
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deadline <- CM.viewContractState refundSlot
slot <- CM.viewModelState CM.currentSlot
when (slot < deadline) $ CM.waitUntilDL deadline

With this extended strategy, the property passes:

> quickCheck prop_FinishEscrow
+++ OK, passed 100 tests.

Actions (3588 in total):
68.87% WaitUntil
20.71% Pay
4.77% Refund
3.18% Redeem
2.48% Init

Refunded wallets (100 in total):
67% 0
13% 2
7% 1
6% 3
6% 4
1% 5

The strategy works, but the statistics we gathered on the number of wallets to be refunded in each test are a little
suspect. In two thirds of the tests, there were no refunds to be made! This is not ideal, given that we are testing
whether or not our refund strategy works.

This leads us to wonder: which phase of the test did we reach before testing our finishing strategy? To find out, we can
just add a couple of lines to the finishingStrategy code, to Plutus.Contract.Test.ContractModel.
Interface.monitor the phase:

finishingStrategy :: DL EscrowModel ()
finishingStrategy = do

contribs <- viewContractState contributions
monitor (tabulate "Refunded wallets" [show . Map.size $ contribs])
phase <- viewContractState phase -- NEW!!!
monitor $ tabulate "Phase" [show phase] -- NEW!!!
waitUntilDeadline
sequence_ [action $ Refund w | w <- testWallets, w `Map.member` contribs]

Testing the property again, we see

Phase (100 in total):
68% Refunding
32% Running

So in two thirds of our tests, we had already reached the Refunding phase before the finishing strategy was in-
voked–which means, in many cases, that the addition we made to the strategy was not needed.

While we certainly want to run some tests of the finishing strategy starting in the Refunding phase, two thirds seems
far too many. How can we ensure that more tests invoke the strategy in the Running phase? The simplest way is
just to choose longer deadlines. There is no particular reason why QuickCheck’s default positive integer distribution
should be the right one for deadlines. The simplest way to increase the values chosen is just to apply QuickCheck’s
scale combinator to the generator concerned:
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arbitraryAction s
| s ^.contractState . phase == Initial

= Init <$> (Slot . getPositive <$> scale (*10) arbitrary) <*> arbitraryTargets

Here we scale the positive integer generator by multiplying the QuickCheck size parameter by ten before generating;
the effect is to increase the range of values by a factor of ten.

Is ten the right number? The only way to tell is to run tests and measure how often we reach the refunding stage:

> quickCheck . withMaxSuccess 1000 $ prop_FinishFast
+++ OK, passed 1000 tests.

Phase (1000 in total):
81.5% Running
18.5% Refunding

Refunded wallets (1000 in total):
34.1% 0
18.5% 1
17.3% 2
13.5% 3
11.2% 4
5.4% 5

It seems that we reach the refunding stage in around 20% of tests, which seems reasonable. Moreover the propertion
of cases in which there are no refunds to be made is now lower–one third instead of two thirds. So this is a useful
improvement.

Finally, we also need to update the unilateral strategy for each wallet in the same way. Once we have done so, then
prop_NoLockedFunds passes again.

Digression: testing the model alone for speed

We ran a thousand tests to measure the proportion that reach the refunding stage, because one hundred tests is rather
few to estimate this percentage from. In fact even a thousand tests is rather few to get accurate results; repeating
that thousand-test run ten times yielded a refunding-percentage ranging from 17.4% to 21.6%. Ideally one might run
millions of tests to measure the distribution, so we can tune the generation more accurately. Yet running a thousand
tests is already quite slow, because of the speed of the emulator.

However, it is not actually necessary to run the tests, to measure their distribution! The measurements we are making
depend only on the model, and so we can make them much more rapidly by taking the emulator out of the test. This is
simple to do: recall we defined prop_FinishEscrow by

prop_FinishEscrow :: Property
prop_FinishEscrow = CM.forAllDL finishEscrow prop_Escrow

which generates a test case from the dynamic logic test scenario finishEscrow, and then runs it using
prop_Escrow. All we have to do to take out the emulator is to replace prop_Escrow by the property that is
always True:

prop_FinishFast :: Property
prop_FinishFast = forAllDL finishEscrow $ const True

This property generates tests in exactly the same way, and gathers statistics in the same way (and checks preconditions
in the same way), but does not actually run the test on the emulator. In other words, it’s an excellent test of the model,
and can be used to tune it (or find bugs in it) without the cost of emulation.
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With this version, we can at least run 100,000 tests in a short time, and obtain much more accurate statistics:

> quickCheck . withMaxSuccess 100000 $ prop_FinishFast
+++ OK, passed 100000 tests.

Phase (100000 in total):
80.514% Running
19.486% Refunding

Refunded wallets (100000 in total):
34.204% 0
18.387% 1
17.514% 2
14.877% 3
10.016% 4
5.002% 5

The results confirm that the distribution of test cases is reasonably good.

Exercises

You will find the code discussed in this section in Spec.Tutorial.Escrow4.

1. Run quickCheck prop_Escrow and observe the distributions reported. You will see that, even though we
have extended the escrow deadlines, many actions are still rejected by their preconditions. Adapt the generator
for actions, so that it only generates each action during the correct phase. How does that affect the proportion of
rejected actions?

2. The supplied code still has a buggy walletStrategy. Verify this by checking that
prop_NoLockedFunds fails, and inspect the counterexample. Correct the walletStrategy, and
veryify that prop_NoLockedFunds now passes.

3. The code also contains a fast version of prop_NoLockedFunds that does not run the emulator. Use this
property to test your model, with and without the fix to the walletStrategy. You should find that the bug
is found anyway (it is at the model level), and that verifying that it has been fixed runs satisfyingly faster.

4. Modify the provided code to remove the scaling we applied to the deadline generator, and test
prop_FinishFast repeatedly to judge the effect on the test case distribution. Reinsert the bug in
walletStrategy, and use

quickCheck . withMaxSuccess 10000 $ prop_NoLockedFundsFast

to find it. Run this repeatedly, and make an estimate of the number of tests needed to find the bug. Reinsert the
scaling, and repeat your estimate. Hopefully this will help persuade you of the value of tuning your test case
distributions!

Measuring coverage of on-chain code

It is always good practice to measure the source-code coverage of tests. Coverage information provides a sanity check
that nothing has been missed altogether: while covering a line of code is no guarantee that a bug in that line will be
revealed, failing to cover a line of code does guarantee that any bug there will not be found. For critical code, it is
reasonable to aim for 100% coverage.

Coverage of Haskell code can be measured using the Haskell Program Coverage toolkit; we will not discuss this
further here. But while this works well for measuring the coverage of off-chain code, it does not apply to on-chain
code, because this is compiled using the Plutus compiler and executed on the blockchain, rather than by GHC. If we
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want to measure the coverage of on-chain code–which is the most critical code in a Plutus contract–then we need to
use a separate tool. This is what we cover in this section.

Adding a coverage index

In order to generate a coverage report, the framework needs to know

1. what was covered by tests,

2. what should have been covered.

Indeed, the most important part of a coverage report is often the parts that were not covered by tests. This latter
information–what should be covered–is represented by a PlutusTx.Coverage.CoverageIndex that the Plutus
compiler constructs. Since the Plutus compiler is invoked using Template Haskell in the code of the contract itself,
then this is where we have to save, and export, the coverage index. That is, we must make additions to the code of a
contract in order to enable coverage measurement.

To do so, we first inspect the code, and find all the occurrences of PlutusTx.compile. In the case of the escrow
contract, they are in the definition of Plutus.Contracts.Escrow.typedValidator:

typedValidator :: EscrowParams Datum -> Scripts.TypedValidator Escrow
typedValidator escrow = go (Haskell.fmap Scripts.datumHash escrow) where

go = Scripts.mkTypedValidatorParam @Escrow
$$(PlutusTx.compile [|| validate ||])
$$(PlutusTx.compile [|| wrap ||])

wrap = Scripts.mkUntypedValidator

The on-chain code consists of validate and wrap. The latter is a library function, whose coverage we do not need
to measure, so we just add (and export) a definition of a PlutusTx.Coverage.CoverageIndex that covers
validate:

covIdx :: PlutusTx.CoverageIndex
covIdx = PlutusTx.getCovIdx $$(PlutusTx.compile [|| validate ||])

Note: It is important that the coverage index is computed in the same module as the calls to PlutusTx.compile,
or else the Haskell compiler–and thus by extension, the Plutus compiler–may produce different code for the coverage
index and for the code under test, resulting in misleading coverage reports.

It just remains to import the necessary types and functions

import PlutusTx.Code qualified as PlutusTx
import PlutusTx.Coverage qualified as PlutusTx

and to supply GHC options that cause the Plutus compiler to generate coverage information:

{-# OPTIONS_GHC -g -fplugin-opt PlutusTx.Plugin:coverage-all #-}

With these additions, the contract implementation is ready for coverage measurement.
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Measuring coverage

Once we have created a suitable PlutusTx.Coverage.CoverageIndex, we must create a test that uses it. To
do so, we need to

1. Run the test using Plutus.Contract.Test.ContractModel.Interface.
quickCheckWithCoverage, and give it coverage options specifying the coverage index,

2. Pass the (modified) coverage options that Plutus.Contract.Test.ContractModel.Interface.
quickCheckWithCoverage constructs in to Plutus.Contract.Test.ContractModel.
Interface.propRunActionsWithOptions (instead of Plutus.Contract.Test.
ContractModel.Interface.propRunActions_) when we run the action sequence, and

3. (Ideally) visualize the resulting PlutusTx.Coverage.CoverageReport as annotated source code.

Here is the code to do all this (we also need to import Plutus.Contract.Test.Coverage):

check_propEscrowWithCoverage :: IO ()
check_propEscrowWithCoverage = do
cr <- CM.quickCheckWithCoverage stdArgs (set coverageIndex covIdx

→˓defaultCoverageOptions) $ \covopts ->
withMaxSuccess 1000 $
CM.propRunActionsWithOptions @EscrowModel CM.

→˓defaultCheckOptionsContractModel covopts
(const (pure True))

writeCoverageReport "Escrow" cr

First we call Plutus.Contract.Test.ContractModel.Interface.quickCheckWithCoverage
with options containing covIdx; it passes modified options to the rest of the property. We test the property 1000
times, so that we are very likely to cover all the reachable code in the tests. We cannot just reuse prop_Escrow, be-
cause we must pass in the modified coverage options covopts when we run the actions, but otherwise this is just the
same as prop_Escrow. The result returned by Plutus.Contract.Test.ContractModel.Interface.
quickCheckWithCoverage is a PlutusTx.Coverage.CoverageReport, which is difficult to interpret
by itself, so we bind it to cr and then generate an HTML file Escrow.html using Plutus.Contract.Test.
Coverage.writeCoverageReport.

Running this does take a little while, because we run a large number of tests; on the other hand, diagnosing why a part
of the code has not been covered can be very time-consuming, and is wasted effort if the reason is simply that we were
unlucky when we ran the tests. It is worth waiting a few minutes for more accurate coverage data, before starting this
kind of diagnosis.

Quite a lot of output is generated, including lists of coverage items that were covered respectively not covered. We
shall ignore these for now; the same information is presented much more readably in the generated HTML file. But
note that we do see statistics on endpoint invocations:

> check_propEscrowWithCoverage
+++ OK, passed 1000 tests:
63.1% Contract instance for W[4] at endpoint pay-escrow
62.5% Contract instance for W[1] at endpoint pay-escrow
62.5% Contract instance for W[2] at endpoint pay-escrow
61.2% Contract instance for W[3] at endpoint pay-escrow
60.8% Contract instance for W[5] at endpoint pay-escrow
29.1% Contract instance for W[5] at endpoint redeem-escrow
28.2% Contract instance for W[1] at endpoint redeem-escrow
27.4% Contract instance for W[3] at endpoint redeem-escrow
25.8% Contract instance for W[2] at endpoint redeem-escrow
25.6% Contract instance for W[4] at endpoint redeem-escrow
4.5% Contract instance for W[1] at endpoint refund-escrow

(continues on next page)

94 Chapter 5. Public Plutus libraries documentation



Plutus Tools SDK User Guide, Release 1.0.0

(continued from previous page)

4.1% Contract instance for W[2] at endpoint refund-escrow
3.9% Contract instance for W[4] at endpoint refund-escrow
3.5% Contract instance for W[3] at endpoint refund-escrow
3.3% Contract instance for W[5] at endpoint refund-escrow

...

This table tells us what percentage of test cases made a call to each endpoint from the given wallet; for example, 63.1%
of test cases made (somewhere) a call to the pay-escrow endpoint from wallet 4. As we can see, the pay-escrow
endpoint is called in most tests from each wallet, redeem-escrow is a bit rarer, and refund-escrow is used
quite rarely. Most serious, of course, would be if one of the endpoints doesn’t appear in this table at all.

It is possible to supply coverage goals for each wallet/endpoint combination via an additional coverage option. We
don’t consider this further here, except to note that by default the framework expects each combination to appear in
20% of tests, and so we get warnings in this case:

Only 4.5% Contract instance for W[1] at endpoint refund-escrow, but expected
→˓20.0%
Only 4.1% Contract instance for W[2] at endpoint refund-escrow, but expected
→˓20.0%
Only 3.5% Contract instance for W[3] at endpoint refund-escrow, but expected
→˓20.0%
Only 3.9% Contract instance for W[4] at endpoint refund-escrow, but expected
→˓20.0%
Only 3.3% Contract instance for W[5] at endpoint refund-escrow, but expected
→˓20.0%

These warnings can be eliminated by specifying more appropriate (lower) coverage goals for these endpoint calls.

Interpreting the coverage annotations

Running the test above writes annotated source code to Escrow.html. The entire contents of the file are reproduced
here. The report contains all of the on-chain code provided in the PlutusTx.Coverage.CoverageIndex,
together with a few lines of code around it for context. Off-chain code appears in grey, so it can be distinguished.
On-chain code on a white background was covered by tests, and we know no more about it. Code on a red or green
background was also covered, but it is a boolean expression, and only took one value (red for False, green for
True). Orange code on a black background is on-chain code that was not covered at all–and thus may represent a gap
in testing.

Looking at the last section of code in the report,

we see that it is the construction of the coverage index, and parts of this code are labelled on-chain and uncovered. We
can ignore this, it’s simply an artefact of the way the code labelling is done.

More interesting is the second section of the report:

This is the main validator, and while some of its code is coloured white, much of it is coloured green. This means the
checks in this function always returned True in our tests; we have not tested the cases in which they return False.

This does indicate a weakness in our testing: since these checks always passed in our tests, then those tests would
also have passed if the checks were removed completely (replaced by True)–but the contract would have been quite
wrong. We will return to this point later, when we discuss negative testing. For now, though, we just note that if the
checks had returned False, then the transaction would have failed–and the off-chain code is, of course, designed not
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to submit failing transactions. So, in a sense, we should expect this code to be coloured green–at least, when we test
through well-designed off-chain endpoints, as we have been doing.

This code fragment also contains some entirely uncovered code–the strings passed to PlutusTx.Trace.
traceIfFalse to be used as error messages if a check fails. Since correct off-chain code never submits failing
transactions, then these error messages are never used–and hence the code is labelled as ‘uncovered’. Again, this is
not really a problem.

The most interesting part of the report is the first section:

This is the function that is used to check that each target payment is made when the escrow is redeemed, and as we
see from the coverage report, there are two cases, of which only one has been tested. In fact the two cases handle
payments to a wallet, and payments to a script, and the second kind of payment is not tested at all by our tests–yet it
is handled by entirely different code in the on-chain function.

This exposes a serious deficiency in the tests developed so far: they give us no evidence at all that target payments
to a script work as intended. To test this code as well, we would need to add ‘proxy’ contracts to the tests, to act as
recipients for such payments. We leave making this extension as an exercise for the reader.

The generated coverage report

This is the generated coverage report in its entirety:

Crashes, and how to tolerate them

One awkward possibility, that we cannot avoid, is that a contract instance might crash during execution–for example,
because of a power failure to the machine it is running on. We don’t want anything to be lost permanently as a result–it
should be possible to recover by restarting the contract instance, perhaps in a different state, and continue. Yet how
should we test this? We need to deliberately crash and restart contracts in tests, and check that they still behave as the
model says they should.

The Plutus.Contract.Test.ContractModel.Interface.ContractModel framework provides a
simple way to extend a contract model, so that it can test crash-tolerance too. If m is a Plutus.Contract.Test.
ContractModel.Interface.ContractModel instance, then so is WithCrashTolerance m–and testing
the latter model will insert actions to crash and restart contract instances at random. To define a property that runs these
tests, all we have to do is import Plutus.Contract.Test.ContractModel.CrashTolerance and include
Plutus.Contract.Test.ContractModel.CrashTolerance.WithCrashTolerance in the type sig-
nature:

prop_CrashTolerance :: CM.Actions (WithCrashTolerance EscrowModel) ->
→˓Property
prop_CrashTolerance = CM.propRunActions_

(The actual code here is the same as prop_Escrow, only the type is different).

We do have to provide a little more information before we can run tests, though.

1. Firstly, we cannot expect to include an action in a test, when the contract(s) that should perform the action
are not running. We thus need to tell the framework whether or not an action is available, given the contracts
currently running.

2. Secondly, when we restart a contract it may need to take some recovery action, and so we must be able to give
it the necessary information to recover. We achieve this by specifying possibly-different contract parameters to
use, when a contract is restarted. These parameters may depend on the model state.
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We provide this information by defining an instance of the Plutus.Contract.Test.ContractModel.
CrashTolerance.CrashTolerance class:

instance CrashTolerance EscrowModel where
available (Init _ _) _ = True
available a alive = (Key $ WalletKey w) `elem` alive

where w = case a of
Pay w _ -> w
Redeem w -> w
Refund w -> w
Init _ _ -> undefined

restartArguments s WalletKey{} = escrowParams' slot tgts
where slot = s ^. CM.contractState . refundSlot

tgts = Map.toList (s ^. CM.contractState . targets)

The Plutus.Contract.Test.ContractModel.CrashTolerance.available method returns True if
an action is available, given a list of active contract keys alive; since contract instance keys have varying types, then
the list actually contains keys wrapped in an existential type, which is why the Key constructor appears there.

The Plutus.Contract.Test.ContractModel.CrashTolerance.restartArguments method pro-
vides the parameter for restarting an escrow contract, which in this case can be just the same as when the contract
was first started. We need to recover the targets from the model state, in which they are represented as a Map
Wallet Value, so we convert them back to a list and refactor the escrowParams function so we can give
escrowParams' a list of (Wallet, Value) pairs, rather than a list of (Wallet, Int):

escrowParams :: Slot -> [(Wallet, Integer)] -> EscrowParams d
escrowParams s tgts = escrowParams' s [(w, Ada.adaValueOf (fromInteger n)) |
→˓(w,n) <- tgts]

escrowParams' :: Slot -> [(Wallet, Value.Value)] -> EscrowParams d
escrowParams' s tgts' =
EscrowParams

{ escrowTargets = [ payToPaymentPubKeyTarget
→˓(mockWalletPaymentPubKeyHash w) v | (w,v) <- tgts' ]

, escrowDeadline = scSlotZeroTime def + POSIXTime (getSlot s *
→˓scSlotLength def)

}

It is possible to define the effect of crashing or restarting a contract instance on the model too, if need be, by defining
additional methods in this class. In this case, though, crashing and restarting ought to be entirely transparent, so we
can omit them.

Surprisingly, the tests do not pass!

> quickCheck prop_CrashTolerance

*** Failed! Assertion failed (after 24 tests and 26 shrinks):
Actions
[Init (Slot {getSlot = 6}) [(Wallet 1,2),(Wallet 4,2)],
Crash (WalletKey (Wallet 4)),
Restart (WalletKey (Wallet 4)),
Pay (Wallet 4) 4,
Redeem (Wallet 1)]

Expected funds of W[4] to change by
Value (Map [(,Map [("",-2000000)])])

but they changed by
Value (Map [(,Map [("",-4000000)])])

a discrepancy of

(continues on next page)
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Value (Map [(,Map [("",-2000000)])])
Expected funds of W[1] to change by
Value (Map [(,Map [("",2000000)])])

but they did not change
Contract instance log failed to validate:
...
Slot 5: 00000000-0000-4000-8000-000000000000 {Wallet W[1]}:

Contract instance stopped with error: RedeemFailed
→˓NotEnoughFundsAtAddress
...

Here we simply set up targets with two beneficiaries, crash and restart wallet 4, pay sufficient contributions to cover
the targets, and then try to redeem the escrow, which seems straightforward enough, and yet the redemption thinks
there are not enough funds in the escrow, even though we just paid them in!

This failure is a little tricky to debug. A clue is that the payment was made by a contract instance that has been
restarted, while the redemption was made by a contract that has not. Do the payment and redemption actually refer to
the same escrow? In fact the targets supplied to the contract instance are not necessarily exactly the same: the contract
receives a list of targets, but in the model we represented them as a map–and converted the list of targets to a map, and
back again, when we restarted the contract. That means the order of the targets might be different.

Could that make a difference? To find out, we can just sort the targets before passing them to the contract instance,
thus guaranteeing the same order every time:

escrowParams' :: Slot -> [(Wallet,Value)] -> EscrowParams d
escrowParams' s tgts' =
EscrowParams

{ escrowTargets = [ payToPaymentPubKeyTarget
→˓(mockWalletPaymentPubKeyHash w) v

| (w,v) <- sortBy (compare `on` fst) tgts' ]
→˓ -- NEW!!

, escrowDeadline = scSlotZeroTime def + POSIXTime (getSlot s *
→˓scSlotLength def)

}

Once we do this, the tests pass. We can also see from the resulting statistics that quite a lot of crashing and restarting
is going on:

> quickCheck prop_CrashTolerance
+++ OK, passed 100 tests.

Actions (2721 in total):
42.48% Pay
24.99% WaitUntil
13.08% Crash
9.52% Restart
6.06% Redeem
3.01% Init
0.85% Refund

Perhaps it’s debatable whether or not the behaviour we uncovered here is a bug, but it is certainly a feature–it was not
obvious in advance that specifying the same targets in a different order would create an independent escrow, but that
is what happens. So for example, if a buyer and seller using an escrow contract to exchange an NFT for Ada specify
the two targets in different orders, then they would place their assets in independent escrow that cannot be redeemed
until the refund deadline passes. Arguably a better designed contract would sort the targets by wallet, as we have done
here, before creating any UTXOs, so that the problem cannot arise.
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Exercises

You will find the code discussed here in Spec.Tutorial.Escrow6, without the addition of sortBy to
escrowParams.

1. Run quickCheck prop_CrashTolerance to provoke a test failure. Examine the counterexample and
the test output, and make sure you understand how the test fails. Run this test several times: you will see the
failure in several different forms, with the same underlying cause. Make sure you understand how each failure
arises.

Why does quickCheck always report a test case with two target payments–why isn’t one target enough to
reveal the problem?

2. Add sorting to the model, and verify that the tests now pass.

3. An alternative way to fix the model is not to convert the targets to a Map in the model state, but just keep them
as a list of pairs, so that exactly the same list can be supplied to the contract instances when they are restarted.
Implement this change, and verify that the tests still pass.

Which solution do you prefer? Arguably this one reflects the actual design of the contract more closely, since
the model makes explicit that the order of the targets matters.

Debugging the Auction contract with model assertions

In this section, we’ll apply the techniques we have seen so far to test another contract, and we’ll see how they re-
veal some surprising behaviour. The contract we take this time is the auction contract in Plutus.Contracts.
Auction. This module actually defines two contracts, a seller contract and a buyer contract. The seller puts up a
Plutus.V1.Ledger.Value.Value for sale, creating an auction UTXO containing the value, and buyers can
then bid Ada for it. When the auction deadline is reached, the highest bidder receives the auctioned value, and the
seller receives the bid.

Modelling the Auction contract

Spec.Auction contains a contract model for testing this contract. The value for sale is a custom token, wallet 1 is
the seller, and the deadline used for testing is fixed at slot 101; the generated tests just consist of an Init action to
start the auction, and a series of Bid actions by the other wallets.

data Action AuctionModel = Init | Bid Wallet Integer
deriving (Eq, Show, Data)

The model keeps track of the highest bid and bidder, and the current phase the auction is in:

data AuctionModel = AuctionModel
{ _currentBid :: Integer
, _winner :: Wallet
, _endSlot :: Slot
, _phase :: Phase
} deriving (Show, Eq, Data)

data Phase = NotStarted | Bidding | AuctionOver
deriving (Eq, Show, Data)

It is updated by the Plutus.Contract.Test.ContractModel.Interface.nextState method on each
bid:
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nextState cmd = do
case cmd of

Init -> do
phase .= Bidding
withdraw w1 $ Ada.toValue Ledger.minAdaTxOutEstimated <>

→˓theToken
wait 3

Bid w bid -> do
currentPhase <- viewContractState phase
when (currentPhase == Bidding) $ do

current <- viewContractState currentBid
leader <- viewContractState winner
withdraw w $ Ada.lovelaceValueOf bid
deposit leader $ Ada.lovelaceValueOf current
currentBid .= bid
winner .= w

wait 2

Note that when a higher bid is received, the previous bid is returned to the bidder.

We only allow bids that are larger than the previous one (which is why Plutus.Contract.Test.
ContractModel.Interface.nextState doesn’t need to check this):

precondition s Init = s ^. contractState . phase == NotStarted
precondition s (Bid w bid) =

-- In order to place a bid, we need to satisfy the constraint where
-- each tx output must have at least N Ada.
s ^. contractState . phase /= NotStarted &&
bid >= Ada.getLovelace (Ledger.minAdaTxOutEstimated) &&
bid > s ^. contractState . currentBid

The most interesting part of the model covers what happens when the auction deadline is reached: in contrast to the
Escrow contract, the highest bid is paid to the seller automatically, and the buyer receives the token. We model this
using the Plutus.Contract.Test.ContractModel.Interface.nextReactiveState method intro-
duced in section Modelling the passage of time

nextReactiveState slot' = do
end <- viewContractState endSlot
p <- viewContractState phase
when (slot' >= end && p == Bidding) $ do
w <- viewContractState winner
bid <- viewContractState currentBid
phase .= AuctionOver
deposit w $ Ada.toValue Ledger.minAdaTxOutEstimated <> theToken
deposit w1 $ Ada.lovelaceValueOf bid

Finally we can define the property to test; in this case we have to supply some options to initialize wallet 1 with the
token to be auctioned:

prop_Auction :: Actions AuctionModel -> Property
prop_Auction script =

propRunActionsWithOptions (set minLogLevel Info options)
→˓defaultCoverageOptions

(\ _ -> pure True) -- TODO: check termination
script

The only important part here is options, which is defined as follows:

100 Chapter 5. Public Plutus libraries documentation



Plutus Tools SDK User Guide, Release 1.0.0

-- | The token that we are auctioning off.
theToken :: Value
theToken =

-- This currency is created by the initial transaction.
someTokenValue "token" 1

-- | 'CheckOptions' that includes 'theToken' in the initial distribution of
→˓Wallet 1.
options :: CheckOptions
options = defaultCheckOptionsContractModel

& changeInitialWalletValue w1 ((<>) theToken)

Unsurprisingly, the tests pass.

> quickCheck prop_Auction
+++ OK, passed 100 tests.

Actions (2348 in total):
85.82% Bid
10.35% WaitUntil
3.83% Init

No locked funds?

Now we have a basic working model of the auction contract, we can begin to test more subtle properties. To begin
with, can we recover the funds held by the contract? The strategy to try is obvious: all we have to do is wait for the
deadline to pass. So prop_FinishAuction is very simple:

finishAuction :: DL AuctionModel ()
finishAuction = do

anyActions_
finishingStrategy
assertModel "Locked funds are not zero" (symIsZero . lockedValue)

finishingStrategy :: DL AuctionModel ()
finishingStrategy = do

slot <- viewModelState currentSlot
end <- viewContractState endSlot
when (slot < end) $ waitUntilDL end

prop_FinishAuction :: Property
prop_FinishAuction = forAllDL finishAuction prop_Auction

This property passes too:

> quickCheck prop_FinishAuction
+++ OK, passed 100 tests.

Actions (3152 in total):
84.77% Bid
12.25% WaitUntil
2.98% Init

Now, to supply a Plutus.Contract.Test.ContractModel.Interface.NoLockedFundsProof we
need a general strategy for fund recovery, and a wallet-specific one. Since all we have to do is wait, we can use the
same strategy as both.

5.2. Tutorials 101



Plutus Tools SDK User Guide, Release 1.0.0

noLockProof :: NoLockedFundsProof AuctionModel
noLockProof = defaultNLFP
{ nlfpMainStrategy = finishingStrategy
, nlfpWalletStrategy = const finishingStrategy }

Surprisingly, these tests fail!

> quickCheck prop_NoLockedFunds

*** Failed! Assertion failed (after 2 tests and 1 shrink):
DLScript
[Do $ Init,
Do $ Bid (Wallet 3) 2000000]

The ContractModel's Unilateral behaviour for Wallet 3 does not match the
actual behaviour for actions:
Actions
[Var 0 := Init,
Var 1 := Bid (Wallet 3) 2000000,
Var 2 := Unilateral (Wallet 3),
Var 3 := WaitUntil (Slot {getSlot = 101})]

Expected funds of W[1] to change by
Value (Map [(363d...,Map [("token",-1)])])

but they changed by
Value (Map [(,Map [("",-2000000)]),(363d...,Map [("token",-1)])])

a discrepancy of
Value (Map [(,Map [("",-2000000)])])

Expected funds of W[3] to change by
Value (Map [(363d...,Map [("token",1)])])

but they changed by
Value (Map [(,Map [("",-2000000)])])

a discrepancy of
Value (Map [(,Map [("",-2000000)]),(363d...,Map [("token",-1)])])

Test failed.

This test just started the auction and submitted a bid from wallet 3, then stopped all the other wallets (this is what
Unilateral (Wallet 3) does), before waiting until the auction deadline. This resulted in a different distribution
of funds from the one the model predicts. Looking at the last part of the message, we see that we expected wallet 3 to
get the token, but it did not; neither did it get its bid back. Wallet 1 did lose the token, though, and in addition lost the
2 Ada required to create the auction UTXO in the first place.

What is going on? The strategy worked in the general case, but failed in the unilateral case, which tells us that the
buyer requires the cooperation of the seller in order to recover the auctioned token. Why? Well, our description of the
contract above was a little misleading: the proceeds of the auction cannot be paid out automatically just because the
deadline passes; the Cardano blockchain won’t do that. Instead, someone must submit the payout transaction. In the
case of this contract, it’s the seller: even though there is no endpoint call at the deadline, the seller’s off-chain code
continues running throughout the auction, and when the deadline comes it submits the payout transaction. So if the
seller’s contract is stopped, then no payout occurs.

This is not a very serious bug, because the on-chain code allows anyone to submit the payout transaction, so the buyer
could in principle do so. However, the existing off-chain code does not provide an endpoint for this, and so recovering
the locked funds would require writing a new version of the off-chain code (or rolling a suitable transaction by hand).
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Model assertions, and unexpected expectations.

Looking back at the failed test again, the expected wallet contents are actually a little unexpected:

Actions
[Var 0 := Init,
Var 1 := Bid (Wallet 3) 2000000,
Var 2 := Unilateral (Wallet 3),
Var 3 := WaitUntil (Slot {getSlot = 101})]

Expected funds of W[1] to change by
Value (Map [(363d...,Map [("token",-1)])])

but they changed by
Value (Map [(,Map [("",-2000000)]),(363d...,Map [("token",-1)])])

a discrepancy of
Value (Map [(,Map [("",-2000000)])])

Notice that, even though wallet 3 made a bid of 2 Ada, we expected the seller to end up without the token, but with no
extra money. Wouldn’t we expect the seller to end up with 2 Ada?

Because prop_Auction passed, then we know that in the absence of a Unilateral then the model and the
contract implementation agree on fund transfers. But does the model actually predict that the seller gets the winning
bid? This can be a little hard to infer from the state transitions themselves; we can check that each action appears to
do the right thing, but whether the end result is as expected is not necessarily immediately obvious.

We can address this kind of problem by adding assertions to the model. The model tracks the change in each wallet’s
balance since the beginning of the test, so we can add an assertion, at the point where the auction ends, that checks
that the seller loses the token and gains the winning bid. We just a little code to Plutus.Contract.Test.
ContractModel.Interface.nextReactiveState:

nextReactiveState slot' = do
end <- viewContractState endSlot
p <- viewContractState phase
when (slot' >= end && p == Bidding) $ do
w <- viewContractState winner
bid <- viewContractState currentBid
phase .= AuctionOver
deposit w $ Ada.toValue Ledger.minAdaTxOutEstimated <> theToken
deposit w1 $ Ada.lovelaceValueOf bid
-- NEW!!!
w1change <- viewModelState $ balanceChange w1 -- since the start of

→˓the test
assertSpec ("w1 final balance is wrong:\n "++show w1change) $

w1change == toSymValue (inv theToken <> Ada.lovelaceValueOf bid) ||
w1change == mempty

If the boolean passed to Plutus.Contract.Test.ContractModel.Interface.assertSpec is False,
then the test fails with the first argument in the error message.

Note: We do have to allow for the possibility that the auction never started, which is why we include in
the assertion the possibility that wallet 1’s balance remains unchanged. Without this, the tests fail.

Now prop_Auction fails!

> quickCheck prop_Auction

*** Failed! Falsified (after 27 tests and 24 shrinks):
Actions

(continues on next page)
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[Init,
Bid (Wallet 3) 2000000,
WaitUntil (Slot {getSlot = 100})]

assertSpec failed: w1 final balance is wrong:
SymValue {symValMap = fromList [], actualValPart = Value (Map

→˓[(363d...,Map [("token",-1)])])}

Note: The balance change is actually a Plutus.Contract.Test.ContractModel.
Symbolics.SymValue, not a Plutus.V1.Ledger.Value.Value, but as you can see it con-
tains a Plutus.V1.Ledger.Value.Value, which is all we care about right now.

Even in this simple case, the seller does not receive the right amount: wallet 1 lost the token, but received no payment!

The reason has to do with the minimum Ada in each UTXO. When the auction UTXO is created, the seller has to put
in 2 Ada along with the token. When the auction ends, one might expect that 2 Ada to be returned to the seller. But it
can’t be: it is needed to create the UTXO that delivers the token to the buyer! Thus the seller receives 2 Ada (from the
buyer’s bid) in this example, but this only makes up for the 2 Ada deposited in the auction UTXO, and the seller ends
up giving away the token for nothing.

This is quite surprising behaviour, and arguably, the contract should require that the buyer pay the seller 2 Ada plus
the winning bid, so that the stated bid is equal to the seller’s net receipts.

Note: Model assertions can be tested without running the emulator, by using Plutus.Contract.
Test.ContractModel.Interface.propSanityCheckAssertions instead of Plutus.
Contract.Test.ContractModel.Interface.propRunActions_. This is very much faster,
and enables very thorough testing of the model. Since other tests check that the implementation corre-
ponds to the model, then this still gives us valuable information about the implementation.

Crashing the auction

Is the auction crash tolerant? To find out, we just declare that Bid actions are available when the corresponding buyer
contract is running, define the restart arguments, and the crash-tolerant property (which just replicates the definition
of prop_Auction with a different type).

instance CrashTolerance AuctionModel where
available (Bid w _) alive = (Key $ BuyerH w) `elem` alive
available Init alive = True

restartArguments _ BuyerH{} = ()
restartArguments _ SellerH{} = ()

prop_CrashTolerance :: Actions (WithCrashTolerance AuctionModel) -> Property
prop_CrashTolerance =
propRunActionsWithOptions (set minLogLevel Critical options)

→˓defaultCoverageOptions
(\ _ -> pure True)

Perhaps unsurprisingly, this property fails:

> quickCheck prop_CrashTolerance

*** Failed! Assertion failed (after 17 tests and 11 shrinks):

(continues on next page)
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Actions
[Init,
Crash SellerH,
WaitUntil (Slot {getSlot = 100})]

Expected funds of W[1] to change by
Value (Map [])

but they changed by
Value (Map [(,Map [("",-2000000)]),

→˓(363d3944282b3d16b239235a112c0f6e2f1195de5067f61c0dfc0f5f,Map [("token",-
→˓1)])])
a discrepancy of
Value (Map [(,Map [("",-2000000)]),

→˓(363d3944282b3d16b239235a112c0f6e2f1195de5067f61c0dfc0f5f,Map [("token",-
→˓1)])])
Test failed.

We already know that the auction payout is initiated by the seller contract, so if that contract is not running, then no
payout takes place. (Although there are no bids in this counterexample, a payout is still needed–to return the token to
the seller). That is why this test fails.

But this is actually not the only way the property can fail. The other failure (which generates some rather long contract
logs) looks like this:

> quickCheck prop_CrashTolerance

*** Failed! Assertion failed (after 13 tests and 9 shrinks):
Actions
[Init,
Crash SellerH,
Restart SellerH]

Contract instance log failed to validate:
... half a megabyte of output ...
Slot 6: 00000000-0000-4000-8000-000000000004 {Wallet W[1]}:

Contract instance stopped with error: StateMachineContractError
→˓(SMCContractError (WalletContractError (InsufficientFunds "Total: Value
→˓(Map [(,Map [(\"\",9999999997645750)])]) expected: Value (Map
→˓[(363d3944282b3d16b239235a112c0f6e2f1195de5067f61c0dfc0f5f,Map [(\"token\",
→˓1)])])")))
Test failed.

In other words, after a crash, the seller contract fails to restart. This is simply because the seller tries to put the
token up for auction when it starts, and wallet 1 no longer holds the token–it is already in an auction UTXO on the
blockchain. So the seller contract fails with an Wallet.Emulator.Error.InsufficientFunds error. To
continue the auction, we would really need another endpoint to resume the seller, which the contract does not provide,
or a parameter to the seller contract which specifies whether to start or continue an auction.

Coverage of the Auction contract

We can generate a coverage report for the Auction contract just as we did for the Escrow one. The interesting part
of the report is:

The auction is defined as a Plutus state machine, which just repeats an auctionTransition over and over again.
We can see that the state machine itself, and most of the transition code, is covered. However, the Bid transition has
only been tested in the case where new bid is higher than the old one. Indeed, the tests are designed to respect that
precondition. Moroever, the last clause in the case expression has not been tested at all–but this is quite OK, because

5.2. Tutorials 105



Plutus Tools SDK User Guide, Release 1.0.0

it returns Nothing which the state machine library interprets to mean “reject the transaction”. So the uncovered code
could only be covered by failing transactions, which the off-chain code is designed not to submit.

Exercises

The code discussed here is in Spec.Auction.

1. Test the failing properties (prop_NoLockedFunds and prop_CrashTolerance) and observe the fail-
ures.

2. Add the model assertion discussed in Model assertions, and unexpected expectations. to the code, and
quickCheck prop_SanityCheckAssertions to verify that it fails. Change the assertion to say that
the seller receives 2 Ada less than the bid, and verify that it now passes.

Becoming Level 1 Certification Ready

Level 1 certification of plutus smart contracts relies on the machinery we have discussed in this tutorial. First things
first we are going to have a look at the Plutus.Contract.Test.Certification module.

This module defines a type Plutus.Contract.Test.Certification.Certification paramtereized
over a type m that should be a Plutus.Contract.Test.ContractModel.Interface.ContractModel.
This is a record type that has fields for:

1. a PlutusTx.Coverage.CoverageIndex,

2. two different types of Plutus.Contract.Test.ContractModel.Interface.
NoLockedFundsProof (a standard full proof and a light proof that does not require you to provide a
per-wallet unilateral strategy),

3. the ability to provide a specialized error whitelist,

4. a way to specify that we have an instance of Plutus.Contract.Test.ContractModel.
CrashTolerance.CrashTolerance for m,

5. unit tests in the form of a function from a Plutus.Contract.Test.Coverage.CoverageRef to a
TestTree (see Plutus.Contract.Test.checkPredicateCoverage for how to construct one of
these), and

6. named dynamic logic unit tests.

Fortunately, understanding what we need to do to get certification-ready at this stage is simple. We just need to build a
Plutus.Contract.Test.Certification.Certification object. For example of how to do this, check
out Spec.GameStateMachine.certification and Spec.Uniswap.certification.

You can run level 1 certification locally using the Plutus.Contract.Test.Certification.Run.certify
function - but at this stage you may find it difficult to read the output of this function. Don’t worry! A certification
dashboard is on the way!
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Exercises

1. Build a certification object for the Auction and Escrow contracts.

5.3 How-to guides

5.3.1 How to get started with the Plutus Platform

We provide a template repository (deprecated) that you can use to get started quickly. The repository README
provides up-to-date instructions for how to set it up.

Further reading

This would be a good time to try one of the tutorials.

5.3.2 How to write a scalable Plutus app

Every dapp has its own requirements for throughput and performance, often quantified in terms of number of concur-
rent users, number of events per time window, and so forth. When building a dapp, developers need to find a design
that achieves the desired performance within the constraints of the underlying blockchain.

The Cardano blockchain uses the extended UTXO model with scripts to represent the ledger state. The UTXO model
with its graph structure is fundamentally different from the account model used by some existing smart-contract
enabled blockchains. As a result, the design patterns that work for dapps on account-based blockchains do not translate
directly to Cardano. We need new design patterns, because the underlying representation of the data is different.

In this document we discuss the structure of the UTXO model and its implications for scalability, arriving at a list
of scalability guidelines that can guide the design of distributed applications on Plutus. We use the example of a
decentralised exchange to illustrate the pros and cons of the different approaches.

The building blocks

Let’s look at the building blocks of the ledger’s scripting features.

Transaction outputs

At its core, the on-chain state of our app is captured in transaction outputs. The extended UTXO model has two types
of transaction outputs: Script outputs and public key outputs. Public key outputs contain the hash of a public key.
Script outputs contain two hashes: The hash of a validator script and the hash of a data value. Both types of outputs
hold crypto currency values.

They differ in the kind of witness that is required to spend them. A public key output can be spent by a transaction
that carry a signature of the private key that corresponds to the output’s public key. A script output can be spent by a
transaction that carries the validator script which hashes to the script hash, and two pieces of data - the redeemer and
the datum. The latter must be the value that hashes to the output’s datum hash. In addition, any transaction attempting
to spend a script output must meet the requirements set out in the validator script.

Output type Witness Address Data
Public key Signature Public key hash N/A
Script composite Script hash Datum hash
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The address of an output is used to group similar outputs together on the ledger. If we have a validator script then we
can look at the ledger to see which outputs are currently at the script’s address, that is, which outputs are locked by the
hash of our validator script.

Each transaction output is uniquely identified by two pieces of data: The hash of the transaction that produced the
output, and the index of this output in the transaction’s list of outputs.

State of transaction outputs

It is tempting to think of the datum hash of a script output as the state of the output. After all, the datum hash is a
piece of data that must be supplied with the spending transaction, and it doesn’t affect the script address. This is a
bit misleading because the datum hash of a transaction output never changes. The datum hash is determined by the
transaction that produces the output, and it is immutable.

There is only one bit of information that changes: Whether the output has been spent. Every transaction output starts
in the unspent state, then it may transition to the spent state. The transition happens when a transaction that spends
the output is appended to the blockchain.

Note: Reality is slightly more complicated: Since transactions can be rolled back, the state of a transaction output can
change back to unspent if the spending transaction gets rolled back. Only when a certain number of blocks have been
added is the spending transaction firmly committed and the state of the output cannot change back to unspent anymore.
Rollbacks are reflected in the Plutus Application Backend (PAB)’s interface for dealing with blockchain events, and
they need to be considered when thinking about the business logic of your applications.

Changing the state of our app

Let’s think of the on-chain state of our application as a set of unspent transactions outputs (a subset of the global
UTXO set that is maintained by the ledger). There are no hard restrictions on how many different outputs or addresses
our app can have – a one-off trade between two parties only needs a single output, while a complex distributed
application with governance, tokens and so forth might involve multiple Plutus scripts and a large number of unspent
transaction outputs.

Fig. 8: A UTXO set with four unspent outputs, two of which belong to our app (green box).

Any transaction that changes the set of UTXOs that belong to our app also changes the state of the app. Transactions
can change our application’s set of UTXOs by adding new outputs to it, or by spending existing unspent outputs.

The number of new outputs that can be added to our application state in a single block is ultimately limited by the
block size. The block size is a protocol parameter that can be adapted over time to match the growth in smart contract
usage. The number of outputs that can be removed from our application state in a block is limited both by the block
size and by the number of outputs that are currently unspent.

To produce a script output we only need to provide the hashes of the script and the datum, whereas to spend a script
output we need to provide the script, datum and redeemer values in full. Transactions that produce script outputs
therefore tend to be smaller (and cheaper) than transactions that spend them. In addition, a transaction that only
produces script outputs and doesn’t spend them cannot fail due to UTXO congestion on script outputs.
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Fig. 9: A block with two transactions, Tx1 and Tx2, both changing the on-chain state of our app. Adding the block to
the chain caused outputs (B) and (D) to become spent, and (E), (F), and (G) to be created in the unspent state.

UTXO congestion

Two transactions conflict if they try to spend the same unspent output. When this happens, only one of the transactions
is added to the ledger. The other transaction is rejected. The author of the rejected transaction must build a new
transaction spending a different output and try again. If many users are trying to spend the same output there can
quickly arise a situation where most users spend a lot of time waiting, because their clients all try to spend the same
output. Almost all of them will fail and try again in the next block.

Congestion can happen on any type of output, but the chances of it happening to public key outputs are low, because
the private key required to spend the output is usually only known to a single wallet, which can keep track of which
outputs it has attempted to spend. For example, let’s assume the user wants to make a payment and run a Plutus script
in two different transactions. When the wallet has constructed and submitted the payment transaction, it remembers
the public key inputs that were used to fund it. Then when the wallet balances the Plutus transaction it knows not to
use the same public key inputs again, even if the inputs are still technically unspent at that time (while the payment
transaction is in the mempool).

Script outputs are more likely to fall victim to UTXO congestion if they can be spent by more than one party. To
avoid UTXO congestion we should therefore design our system such that the number of simultaneous attempts made
to spend the same script output is as low as possible. What does this mean for the state of our distributed application?

We need to minimise the number of transactions that are trying to spend the same script output. At the same time,
we should design the system so that the access patterns which require relatively high throughput can be realised
exclusively by producing script outputs, not by spending script outputs.

5.3. How-to guides 109



Plutus Tools SDK User Guide, Release 1.0.0

Minting Policy Scripts

Another way to run Plutus scripts on the ledger is by creating tokens with a custom minting policy. From a scalability
perspective, minting scripts are great because they do not consume a script input. They aren’t subject to UTXO
congestion on script outputs, while allowing us to run a script in the transaction that produces the tokens. Seeing the
token on the ledger is therefore evidence that the minting policy script has been executed successfully (as opposed to
seeing a script output on the ledger, which can be produced without running any scripts at all). Whenever we need to
run a Plutus script in our application we should ask ourselves if we can make this script a minting policy, and only use
validators if we absolutely have to store some information or crypto currency value in a transaction output.

Scalability guidelines

The discussion of the UTXO model above can be summarised in three guiding principles for avoiding bottlenecks in
your app:

1. Minimise the number of transactions that are trying to spend the same script output. The number of
entities (users) that try to spend a given script output at a single time should be small. It should certainly not
grow with the total number of concurrent users of the system. A good distributed app design ensures that the
number of UTXOs that make up the application state grows with the number of active users, and that each user
interacts with a small subset of the application’s UTXOs only.

2. Decouple the spending of script outputs from producing script outputs. Transactions that don’t spend script
outputs are not liable to UTXO congestion on script outputs.

3. Use minting policy scripts and tokens. Minting policies are Plutus scripts that can be run without spending
a script output. Besides being useful for NFTs and other currency-like applications, tokens created by Plutus
minting policies can act as evidence that some event happened in the past. For example, we could write a state
machine that produces a token in its last transition. This token can then be used as proof that the state machine
has finished, long after the last output has been spent. In this way, minting policies could be used to implement
certain forms of oracles.

Examples

Decentralised exchange

A decentralised exchange (DEX) can be realised either as an automated market maker (AMM) contract or using an
order book. The AMM approach results in one UTXO per liquidity pair. This is fine for rarely-traded pairs, but pairs
that have even close to one trade per block will soon run into UTXO congestion issues. Frequently traded pairs are
better off with an order book model. Each order (bid/ask) is represented as a single UTXO. Creating a new order
only requires adding a script output, so it cannot be subject to UTXO congestion. Matching orders is performed by a
service that scans the blockchain for script outputs, maintains an order book and creates spending transactions when a
match has been made. This is an example decoupling the spending of script outputs from producing them (Guideline
2). It is an instance of the order book pattern.

The basic idea could be extended in many different ways. For example, minting policies can be used to enforce
payment for market makers or to create governance tokens. If the code was open sourced, anyone could run a match
making service and earn fees, thus creating incentives for fast settlement. This would result in a truly decentralised
exchange, because the match making could be performed by anyone without central coordination.
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Marlowe

Marlowe is implemented using the Plutus state machine libraries. The number of concurrent users on a given Marlowe
instance is fixed and limited, and it rarely exceeds a handful. Updates that require spending and producing the instance
UTXO happen with a frequency of much less than once per block. The chances of UTXO congestion happening on a
Marlowe contract instance are therefore small (Guideline 1). If they do happen, they only affect a single instance of
Marlowe, and not the entire system.

Summary

Apart from the guidelines, the main lesson of this article is that Plutus apps need to be designed with the UTXO ledger
in mind. Porting an existing contract from an account-based blockchain such as Ethereum is likely to result in UTXO
congestion if the entire on-chain state of the app is kept in a single unspent output.

5.3.3 How to handle blockchain events

The state of a Cardano dapp often spans many UTXOs and it can change with every new block that’s added to the
chain. Our off-chain code needs to react to state changes, for example by informing users that a trade has been settled,
or by constructing new transactions in response to actions of other participants. Since many smart contracts are time
sensitive, we want to respond to these events as quickly as possible.

With the Plutus Application Backend (PAB) we can write reactive off-chain code that deals promptly with blockchain
events, using an easy-to-consume interface that wraps some of the complexity of the distributed ledger.

Transaction output lifecycle

Transaction outputs are either spent or unspent. They start out as unspent, when the transaction that produces them
is added to the chain. Later on, another transaction might use them as inputs, so their state changes to spent. Once
an output has been spent, it can never be “un-spent”, or spent a second time – that’s a fundamental property of the
ledger. However, for certain time after a block of transactions was first appended to the blockchain, it is possible for it
to disappear again as result of a rollback.

Transaction states

In the presence of rollbacks, transactions have three states that they can switch between: Unknown, tentatively con-
firmed, and committed.

If we want to respond to a new transaction as quickly as possible (for example, by spending one of its outputs), we
must be prepared for the possibility that the transaction is rolled back, invalidating our own transaction.

Note: The fact that rolling back a transaction invalidates all transactions that spend the rolled-back transaction’s
outputs can be useful for combining multiple actions in a group of transaction that should all be accepted or rejected
together.
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Fig. 10: The state of transactions as observed by the PAB, and possible transitions between them. When the transaction
is deep enough in the blockchain, the state changes to committed and does not change anymore.

PAB functions for listening to state changes

The PAB has a function for the state of a transaction to change:

-- | Wait for the status of a transaction to change
awaitTxStatusChange ::

forall w s e.
(AsContractError e)
=> TxId
-> Contract w s e TxStatus

Plutus.Contract.Request.awaitTxStatusChange returns a Plutus.ChainIndex.Types.
TxStatus value with the new state of the transaction.

Note: If you do not want to deal with rollbacks in your application, you can keep calling awaitTxStatusChange until
the status is DefinitelyConfirmed. This will eventually happen for all valid transactions.

In addition, we can use the following functions to wait for outputs to be spent or to appear at a given address on the
chain:

{-| Wait until one or more unspent outputs are produced at an address.
-}
awaitUtxoProduced ::

forall w s e .
(AsContractError e)
=> CardanoAddress
-> Contract w s e (NonEmpty ChainIndexTx)

{-| Wait until the UTXO has been spent, returning the transaction that spends it.
-}
awaitUtxoSpent ::
forall w s e.

(continues on next page)
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(AsContractError e)
=> TxOutRef
-> Contract w s e ChainIndexTx

With this functions we can implement off-chain code that reacts quickly to on-chain events.

5.3.4 How to analyse the cost and size of Plutus scripts

Running Plutus scripts on a validating node uses CPU time and RAM space, which are paid for by transaction fees.
When building a decentralised application in Plutus we need to keep an eye on the size of the transactions that we
submit to the network.

The Plutus libraries give us some tools for measuring the resource consumption of our scripts.

Resource use of Plutus scripts

There are two types of resources used by Plutus transactions. First we have the runtime cost – the amount of CPU and
RAM used to actually run the script. Then there is the network cost – the size of the transaction, which determines
network load and storage need when the transaction is added to the blockchain.

The Plutus.Trace.Emulator.Extract module lets us analyse both types of cost for transactions that are produced by the
Plutus emulator.

Plutus.Trace.Emulator.Extract.writeScriptsTo is a function that, given an emulator trace, produces
a JSON file for each transaction that is created during that trace.

{-| Run an emulator trace and write the applied scripts to a file in Flat format
using the name as a prefix.

-}
writeScriptsTo

:: Extract.ScriptsConfig -- ^ Configuration
-> String -- ^ Prefix to be used for file names
-> EmulatorTrace a -- ^ Emulator trace to extract transactions from
-> EmulatorConfig -- ^ Emulator config
-> IO (Sum Int64, ExBudget) -- Total size and 'ExBudget' of extracted scripts

The Plutus.Trace.Emulator.Extract.Command argument selects one of two modes of Plutus.Trace.
Emulator.Extract.writeScriptsTo. The mode determines what kind of data is written to the folder speci-
fied in Plutus.Trace.Emulator.Extract.scPath.

1. Plutus.Trace.Emulator.Extract.Scripts writes the validator scripts, one for each script input
that is validated as part of the emulator trace. Here we have the choice between fully applied validators and
unapplied validators. Fully applied means that we get a Plutus Core (PLC) program that can be evaluated to the
unit value (or an error). This is the program that the node actually runs when validating the script input, and it is
used for determining the script execution cost. Unapplied results in the PLC program of the unapplied validator.
This tells us the size of the serialised Plutus script that we need to attach to the spending transaction. In both
cases the CPU and memory budget in ExUnits will be displayed in the terminal (see sample output below).

2. Plutus.Trace.Emulator.Extract.Transactions writes all partial transactions that are sent to the
(emulated) wallet for balancing before they are submitted to the network. Each partial transaction results in a
JSON file. The transaction field of the JSON object contains the actual transaction in the text envelope format
used by cardano-api. Since the transaction body is hex encoded, we can look at the length of the cborHex field
and divide it by two in order to get the size of the partial transaction in bytes. Note that the final transaction will
be slightly larger, because some additional inputs and outputs will be added by the wallet.
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Examples

To see Plutus.Trace.Emulator.Extract.writeScriptsTo in action you can run the plutus-use-cases-
scripts command that is part of the plutus-use-cases package in our repository.

Validator scripts

cabal run plutus-use-cases-scripts -- ./tmp scripts

results in the following output:

Writing scripts (fully applied) to: ./tmp
Writing script: ./tmp/auction_1-1.flat (Size: 3.7kB, Cost: ExCPU 309803992, ExMemory
→˓789488)
Writing script: ./tmp/auction_1-2.flat (Size: 9.1kB, Cost: ExCPU 1122022080, ExMemory
→˓3410856)
Writing script: ./tmp/auction_1-3.flat (Size: 9.1kB, Cost: ExCPU 1126876612, ExMemory
→˓3408894)
Writing script: ./tmp/auction_1-4.flat (Size: 3.9kB, Cost: ExCPU 395045625, ExMemory
→˓989992)
Writing script: ./tmp/auction_2-1.flat (Size: 3.7kB, Cost: ExCPU 309803992, ExMemory
→˓789488)
Writing script: ./tmp/auction_2-2.flat (Size: 9.1kB, Cost: ExCPU 1122022080, ExMemory
→˓3410856)
Writing script: ./tmp/auction_2-3.flat (Size: 9.2kB, Cost: ExCPU 1267324633, ExMemory
→˓3853688)
Writing script: ./tmp/auction_2-4.flat (Size: 9.4kB, Cost: ExCPU 1376566955, ExMemory
→˓4153874)
Writing script: ./tmp/auction_2-5.flat (Size: 9.1kB, Cost: ExCPU 1126876612, ExMemory
→˓3408894)

Note: The program writes out fully applied validators by default. Fully applied validators are larger than unapplied
validators because they contain not just the validator code itself but also all arguments, including the Plutus.V1.
Ledger.Contexts.ScriptContext. The script context can be quite large as it is a representation of the entire
transaction body.

Running the program in the unapplied validator mode gives us a more realistic picture:

cabal run plutus-use-cases-scripts -- ./tmp scripts --unapplied-validators
Writing scripts (unapplied) to: ./tmp
Writing script: ./tmp/auction_1-1-unapplied.flat (Size: 2.9kB, Cost: ExCPU 309803992,
→˓ExMemory 789488)
Writing script: ./tmp/auction_1-2-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1122022080,
→˓ ExMemory 3410856)
Writing script: ./tmp/auction_1-3-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1126876612,
→˓ ExMemory 3408894)
Writing script: ./tmp/auction_1-4-unapplied.flat (Size: 2.9kB, Cost: ExCPU 395045625,
→˓ExMemory 989992)
Writing script: ./tmp/auction_2-1-unapplied.flat (Size: 2.9kB, Cost: ExCPU 309803992,
→˓ExMemory 789488)
Writing script: ./tmp/auction_2-2-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1122022080,
→˓ ExMemory 3410856)
Writing script: ./tmp/auction_2-3-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1267324633,
→˓ ExMemory 3853688)

(continues on next page)
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Writing script: ./tmp/auction_2-4-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1376566955,
→˓ ExMemory 4153874)
Writing script: ./tmp/auction_2-5-unapplied.flat (Size: 8.1kB, Cost: ExCPU 1126876612,
→˓ ExMemory 3408894)
(...)

Now the script sizes are more realistic.

Partial transactions

cabal run plutus-use-cases-scripts -- ./tmp transactions -p ./plutus-use-cases/
→˓scripts/protocol-parameters.json

results in

Writing transactions to: ./tmp
Writing partial transaction JSON: ./tmp/auction_1-1.json
Writing partial transaction JSON: ./tmp/auction_1-2.json
Writing partial transaction JSON: ./tmp/auction_1-3.json
Writing partial transaction JSON: ./tmp/auction_1-4.json
Writing partial transaction JSON: ./tmp/auction_2-1.json
Writing partial transaction JSON: ./tmp/auction_2-2.json
Writing partial transaction JSON: ./tmp/auction_2-3.json
(...)

Each file contains the partial transaction and some additional information that the wallet uses for balancing.

{
"transaction": {

"cborHex": "84a500800d800(...)",
"description": "",
"type": "Tx AlonzoEra"

},
"signatories": [],
"inputs": [

{
"txIn": "0636250aef275497b4f3807d661a299e34e53e5ad3bc1110e43d1f3420bc8fae

→˓#6",
"txOut": {

"address": "addr1vy6aahffs2sreuu70h8q8jpen98lmmpwc6cy788j6s8xrgcpajqhn
→˓",

"value": {
"lovelace": 100000000

}
}

}
]

}
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5.3.5 Plutus Scripts

What is a Plutus spending script?

This is a type of Plutus script that is required to validate the spending of a tx output at its own script address. The tx
output at the Plutus script address must be associated with a datum hash, otherwise, the tx output will be unspendable!
The purpose of this datum hash is to encode the state of the contract. A demonstration of this can be seen in lecture #7
of the Plutus Pioneers Program. The Plutus spending script expects a datum and a redeemer in order to successfully
validate the spending of the tx output at its own script address; note that the redeemer is considered to be the user
input. These are supplied in the transaction being submitted along with the Plutus script itself and specified transaction
execution units.

The transaction execution units are an upper bound or budget of what will be spent to execute the Plutus script. If
you don’t specify a high enough value to cover script execution, your transaction will still be successful (provided it
is a valid tx) but you will lose your collateral. The collateral is the transaction input(s) you specify to be consumed if
your script fails to execute. There is a protocol parameter collateralPercent that determines what percentage
of your inputs you must supply as collateral.

Note that in order to use a tx input as collateral, itcannotreside at a script address; it must reside at a ‘normal’
payment address and it cannot contain any multi-assets.

NB: All variable assignments can be looked up in cardano-node/scripts/plutus/example-txin-locking-plutus-script.sh

An example of using a Plutus spending script

Below is an example that shows how to use a Plutus spending script. This is a step-by-step process involving:

• the creation of the AlwaysSucceeds Plutus txin script

• sending ADA to the Plutus script address

• spending ADA at the Plutus script address

In this example we will use the AlwaysSucceeds Plutus spending script. In order to execute a Plutus spending script,
we require the following:

• Collateral tx input(s) - these are provided and are forfeited in the event the Plutus script fails to execute.

• A Plutus tx output with accompanying datum hash. This is the tx output that sits at the Plutus script address. It
must have a datum hash, otherwise, it is unspendable.

• The Plutus script serialized in the text envelope format. cardano-cli expects Plutus scripts to be serialized
in the text envelope format.

Creating the AlwaysSucceeds Plutus spending script

The plutus-example executable will automagically generate several Plutus scripts in the CLI-compatiable text envelope
format.

Run the following commands:

cd plutus-example

cabal run exe:plutus-example

This will output always-succeeds-txin.plutus in the generated-plutus-scripts dir.
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Setting up a local Alonzo node cluster

There is a convenient script that will set up an Alonzo cluster immediately on your local machine.

Run the following command:

cabal install cardano-cli
cabal install cardano-node
./cardano-node/scripts/byron-to-alonzo/mkfiles.sh alonzo

Follow the instructions displayed in the terminal to start your Alonzo cluster.

Sending ADA to the script address

In order to require a Plutus script to validate the spending of a tx ouput, we must put the tx output at the script address
of the said Plutus script. However, before we do that, we must create a datum hash:

> cardano-cli transaction hash-script-data --script-data-value 42
> 9e1199a988ba72ffd6e9c269cadb3b53b5f360ff99f112d9b2ee30c4d74ad88b

In this example, the script we are using always succeeds so we can use any datum hash. We calculate the script address
as follows:

> cabal run exe:plutus-example
> cardano-cli address build --payment-script-file generated-plutus-scripts/always-
→˓succeeds-txin.plutus --testnet-magic 42
> addr_test1wzeqkp6ne3xm6gz39l874va4ujgl4kr0e46pf3ey8xsu3jsgkpcj2

Now, we should create the tx that will send ADA to the script address of our AlwaysSucceeds script:

cardano-cli transaction build-raw \
--alonzo-era \
--fee 0 \
--tx-in $txin \
--tx-out "addr_test1wzeqkp6ne3xm6gz39l874va4ujgl4kr0e46pf3ey8xsu3jsgkpcj2+$lovelace

→˓" \
--tx-out-datum-hash

→˓9e1199a988ba72ffd6e9c269cadb3b53b5f360ff99f112d9b2ee30c4d74ad88b \
--out-file create-datum-output.body

cardano-cli transaction sign \
--tx-body-file create-datum-output.body \
--testnet-magic 42 \
--signing-key-file $UTXO_SKEY \
--out-file create-datum-output.tx
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Spending ADA at the script address

Now that there is ADA at our script address, we must construct the appropriate transaction in order to spend it.

$plutusutxotxin - This is the tx input that sits at the Plutus script address (NB: It has a datum hash).
$plutusrequiredtime and $plutusrequiredspace - These make up the Plutus script execution budget
and are part of the $txfee tx-in-redeemer-value - We must also supply a redeemer value even though the
Plutus script will succeed regardless of the redeemer.

cardano-cli transaction build-raw \
--alonzo-era \
--fee "$txfee" \
--tx-in $plutusutxotxin \
--tx-in-collateral $txinCollateral \
--tx-out "$dummyaddress+$spendable" \
--tx-in-script-file $plutusscriptinuse \
--tx-in-datum-value 42 \
--protocol-params-file pparams.json\
--tx-in-redeemer-value 42 \
--tx-in-execution-units "($plutusrequiredtime, $plutusrequiredspace)" \
--out-file test-alonzo.body

cardano-cli transaction sign \
--tx-body-file test-alonzo.body \
--testnet-magic 42 \
--signing-key-file "${UTXO_SKEY}" \
--out-file alonzo.tx

If there is ADA at $dummyaddress then the Plutus script was successfully executed. Conversely, if the Plutus script
failed, the collateral input would have been consumed.

You can use the example-txin-locking-plutus-script.sh in conjunction with mkfiles.sh alonzo script to automagically
run the AlwaysSucceeds script.

5.4 Troubleshooting

5.4.1 Error codes

To reduce code size, on-chain errors only output codes. Here’s what they mean:

• Ledger errors

– L0: Input constraint

– L1: Output constraint

– L2: Missing datum

– L3: Wrong validation interval

– L4: Missing signature

– L5: Spent value not OK

– L6: Produced value not OK

– L7: Public key output not spent

– L8: Script output not spent
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– L9: Value minted not OK

– La: MustPayToPubKey

– Lb: MustPayToOtherScript

– Lc: MustHashDatum

– Ld: checkScriptContext failed

– Le: Can't find any continuing outputs

– Lf: Can't get any continuing outputs

– Lg: Can't get validator and datum hashes

– Lh: Can't get currency symbol of the current validator script

– Li: DecodingError

• State machine errors

– S0: Can't find validation input

– S1: State transition invalid - checks failed

– S2: Thread token not found

– S3: Non-zero value allocated in final state

– S4: State transition invalid - constraints not satisfied by
ScriptContext

– S5: State transition invalid - constraints not satisfied by
ScriptContext

– S6: State transition invalid - input is not a valid transition at the
current state

– S7: Value minted different from expected

– S8: Pending transaction does not spend the designated transaction
output

• Currency errors

– C0: Value minted different from expected

– C1: Pending transaction does not spend the designated transaction
output

5.5 Architectural Decision Records

We document our architectural and design decisions for all of our components. In order to do that, there is practice
called architectural decision records (“ADR”), that we can integrate into our workflow. An architectural decision
record (ADR) is a document that captures an important architectural decision made along with its context and conse-
quences.

The goals are:

• making decisions transparent to internal/external stakeholders and contributors.

• getting feeback on decisions that we’re about to make or have made

• providing external contributors a framework to propose architectural changes
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• providing a big picture of all major decisions that were made

The general process for creating an ADR is:

1. cloning the repository

2. creating a new file with the format <ADR_NUMBER>-<TITLE>.rst in the directory doc/adr

3. adding the ADR in the table of content tree of the Readthedocs

4. committing and pushing to the repository

5.5.1 ADR 1: Record architectural decisions

Date: 2022-06-08

Authors

koslambrou <konstantinos.lambrou@iohk.io>

Status

Accepted

Context

We are in search for a means to document our architectural and design decisions for all of our components. In order
to do that, there is practice called architectural decision records (“ADR”), that we can integrate into our workflow.

This does not replace actual architecture documentation, but provides people who are contributing:

• the means to understand architectural and design decisions that were made

• a framework for proposing changes to the current architecture

For each decision, it is important to consider the following factors:

• what we have decided to do

• why we have made this decision

• what we expect the impact of this decision to be

• what we have learned in the process

As we’re already using rST, Sphinxdoc and readthedocs, it would be practical to integrate these ADRs as part of our
current documentation infrastructure.
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Decision

• We will use ADRs to document, propose and discuss any important or significant architectural and design
decisions.

• The ADR format will follow the format described in Implications section.

• We will follow the convention of storing those ADRs as rST or Markdown formatted documents stored under the
docs/adr directory, as exemplified in Nat Pryce’s adr-tools. This does not imply that we will be using adr-tools
itself, as we might diverge from the proposed structure.

• We will keep rejected ADRs

• We will strive, if possible, to create an ADR as early as possible in relation to the actual implementation.

Implications

ADRs should be written using the template described in the ADR template which comes from Chapter 6.5.2 (A Tem-
plate for Documenting Architectural Decisions) of Documenting Software Architectures: Views and Beyond (2nd
Edition).

However, the mandatory sections are Title, Status, Issue/Context, Decision, Implications/Consequences. The rest are
optional.

Another good reference is the article Architecture Decision Records by Michael Nygard (Nov. 15, 2011).

ADR template

What follows is the ADR format (adapted from the book).
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Section Description
Title These documents have names that are short noun

phrases.
For example, “ADR 1: Deployment on Ruby on Rails
3.0.10” or “ADR 9: LDAP for Multitenant Integration”

Authors List each author’s name and email.
Status State the status of the decision, such as “draft” if the de-

cision is still being written, as “proposed” if the project
stakeholders haven’t agreed with it yet, “accepted” once
it is agreed. If a later ADR changes or reverses a deci-
sion, it may be marked as “deprecated” or “superseded”
with a reference to its replacement. (This is not the sta-
tus of implementing the decision.)

Issue (or context) This section describes the architectural design issue be-
ing addressed. This description should leave no ques-
tions as to why this issue needs to be addressed now.
The language in this section is value-neutral. It is sim-
ply describing facts.

Decision Clearly state the solution chosen. It is the selection of
one of the positions that the architect could have taken.
It is stated in full sentences, with active voice. “We will
. . . ”

Tags Add one or more tags to the decision. Useful for orga-
nizing the set of decision.

Assumptions Clearly describe the underlying assumptions in the en-
vironment in which a decision is being made. These
could be cost, schedule, technology, and so on. Note
that constraints in the environment (such as a list of ac-
cepted technology standards, an enterprise architecture,
or commonly employed patterns) may limit the set of
alternatives considered.

Argument Outline why a position was selected. This is probably
as important as the decision itself. The argument for a
decision can include items such as implementation cost,
total cost of ownership, time to market, and availability
of required development resources.

Alternatives List alternatives (that is, options or positions) consid-
ered.
Explain alternatives with sufficient detail to judge their
suitability; refer to external documentation to do so if
necessary. Only viable positions should be described
here. While you don’t need an exhaustive list, you also
don’t want to hear the question “Did you think about. . .
?” during a final review, which might lead to a loss of
credibility and a questioning of other architectural deci-
sions. Listing alternatives espoused by others also helps
them know that their opinions were heard. Finally, list-
ing alternatives helps the architect make the right deci-
sion, because listing alternatives cannot be done unless
those alternatives were given due consideration.

Implications (or consequences) Describe the decision’s implications. For example, it
may

• Introduce a need to make other decisions
• Create new requirements
• Modify existing requirements
• Pose additional constraints to the environment
• Require renegotiation of scope
• Require renegotiation of the schedule with the

customers
• Require additional training for the staff

Clearly understanding and stating the implications of
the decisions has been a very effective tool in gaining
buy-in. All consequences should be listed here, not just
the “positive” ones. A particular decision may have pos-
itive, negative, and neutral consequences, but all of them
affect the team and project in the future.

Related Decisions List decisions related to this one. Useful relations
among decisions include causality (which decisions
caused other ones), structure (showing decisions’ par-
ents or children, corresponding to architecture elements
at higher or lower levels), or temporality (which deci-
sions came before or after others).

Related Requirements Map decisions to objectives or requirements, to show
accountability. Each architecture decision is assessed as
to its contribution to each major objective. We can then
assess how well the objective is met across all decisions,
as part of an overall architecture evaluation.

Affected Artifacts List the architecture elements and/or relations affected
by this decision. You might also list the effects on other
design or scope decisions, pointing to the documents
where those decisions are described. You might also
include external artifacts upstream and downstream of
the architecture, as well as management artifacts such
as budgets and schedules.

Notes Capture notes and issues that are discussed during the
decision process. They can be links to a external docu-
ment, a PR, a Github issue, etc.
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5.5.2 ADR 2: Repository Standardization

Date: 2022-07-06

Authors

Lorenzo Calegari <lorenzo.calegari@iohk.io>

Status

Draft

Context

IOG is undertaking a company-wide effort to restructure and standardize its repositories, favoring mono-repos and
enforcing shared GitOps and DevOps processes. Parallel to this, a new CI infrastructure is being developed.

Examples of this are:

• input-output-hk/cardano-world

• input-output-hk/ci-world

• input-output-hk/atala-world

This initiative appears to be championed by the SRE team who are the creators of divnix/std. Indeed std is at the heart
of the standardization dream.

Decision

• Standardization of the repositories has been deemed a worthwhile endeavour, though of very low priority.

• Phase 1 of the standardization process will be carried out in parallel with Move Marconi to a separate repository.
A separate repository will be created for Marconi, and from the very beginning it will use std. This way the
benefits, limitations and integration costs of std can be experienced and measured, and an informed, definitive
decision on standardizing plutus-core and plutus-apps themselves can be made.

Argument

In short, std aims to answer the one critical question that pops in the mind of newcomers and veterans alike:

What can I do with this repository?

In practice, std is flake-based nix library code that provides a strongly-but-sensibly-opinionated top-level interface for
structuring all your nix code.

This is wonderful news for the owner of the repository’s nix code, but what about every other stakeholder? Especially
developers who don’t care/know about nix?

Contributors of a standardized codebase will be gifted with a TUI to discover and interact with the repository, which
is probably something that is long overdue as an industry-level best-practice.

Who wouldn’t want to clone a repository, type std and be presented with a TUI that gives you an interactive tour of the
repository’s artifacts, together with a list of all possible DevOps and GitOps actions (build, test, develop, run, deploy,
benchmark, publish, package, monitor, . . . ) in addition to any other action that you may define.
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And for power users and automators, there is an equivalent CLI to the TUI. This makes README files obsolete to an
extent. A TUI/CLI combo represents the best conceivable solution in terms of user experience (only a GUI could top
that perhaps).

In conclusion, the advantages of standardizing the repositories are:

• Enforce a shared mental model for internal and external teams to effortlessly reason about the codebase.

• Provide a TUI/CLI to more easily discover, interact with, and contribute to the repository, with the goal to
provide a superior user experience to all stakeholders.

• Refactor all existing Nix code into a supposedly far better structure. std seems to solve the “import problem”
by automatically parsing the directory structure and threading all derivations into a globally accessible top-level
scope, drastically reducing the average length of paths in the dependency graph, both at the file level and at the
term/variable level. This all translates into cleaner, more maintainable code.

Implications

The plutus repositories now exhibit a large amount of duplicated nix (and configuration) code, as a result of the split
into plutus-core and plutus-apps.

While introducing std will not in itself help reduce duplication, the refactoring process will involve identifying and
isolating shared components that can be later packaged and separated into library code.

The goal is to standardize both repositories, by introducing std and refactoring all existing nix code accordingly.

The SRE team has also created several other satellite repositories containing reusable nix code to support this process,
though it is unclear at this stage whether these are relevant to standardizing plutus-core and plutus-apps.

Such repositories include:

• nixagii

• devshell-capsules

• kladoi

The standardization process would follow the 4 Layers SRE Mental Model, which begins by introducing std in Layer
1 (binary packaging). Layers 2-3-4 (which is mostly DevOps) will be postponed to a later date, once the migration to
the new CI systems has been officially approved and initiated.

5.5.3 ADR 3: Move Marconi into a separate repository

Date: 2022-06-08

Authors

Lorenzo Calegari <lorenzo.calegari@iohk.io>
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Status

Draft

Context

Marconi is a Haskell executable and library that lives in plutus-chain-index.

It is desirable to move it into a separate repository for the following reasons:

• Better visibility and easier to discover

• It wants to update the version of its cardano-api dependency independently of the version used by plutus-apps

• It is a farily independent component, therefore it warrants its own repository

However, creating a separate repository would be rather costly. It would involve a great deal of duplication, due to the
way our current nix code is structured, not to mention the added complexity and overhead inherent in maintaining a
separate codebase.

Decision

• We will put Marconi in a separate Github repository

• Until we resolve the issues with creating a separate Github repository (see Context), we will keep Marconi as a
separate project in plutus-apps

Implications

• A nix flake will be added in plutus-apps so that users will be able to obtain the Marconi executable trivially

• The possibility to specify a separate version of cardano-api just for Marconi, while staying in plutus-apps,
will be explored

• As a very low priority task, a new repository will be created for Marconi, which will use std from the start (see
Repository Standardization)

Related Decisions

Repository Standardization

5.5.4 ADR 4: Making a case for Marconi

Date: 2022-07-26
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Author(s)

Radu Ometita <radu.ometita@iohk.io>

Status

Proposed

Context

Plutus off-chain code oftentimes needs access to indexed portions of the blockchain. The plutus-chain-index project is
the initial solution meant to deliver access to this kind of data. However, after release, a couple of shortcomings were
identified which prompted the development of an indexing solution that is based on a different set of architectural and
functional constraints.

A lot of the shortcomings are connected to the exploratory type of development that we used to deliver the plutus-
chain-index which was prompted by the lack of a clear specification and a lack of concern for non-functional and
quality assurance requirements. The top-down design resulted in a monolithic and fairly complex architecture which
made the code difficult to reuse, compose and understand.

Some of the problems we identified due to the above-mentioned approaches are:

A. The use of an effect system (the freer-simple package) makes the code fairly complex and difficult to understand
(quite a few type-level computations are happening). The separation between syntax and semantics imposed by
the library also complicates matters for no clear reason (for example, if we write two semantics, one for pure
code used for testing and one for production code, then there would be a lot of production code that would not
be tested).

B. We cannot customise the indexed set of data, the plutus-chain-index provides only all-or-nothing indexing.
While this can be addressed, the architecture makes it an uphill battle.

C. The implicit assumption that there is only one index running caused issues when we made the Plutus Application
Backend collect and index information requested by smart contracts. Now we have two components that index
information from the blockchain, but they are not synchronised. Querying the plutus-chain-index about transac-
tions received from the Plutus Application Backend may result in no data returned, since the plutus-chain-index
indexes data slower than the PAB.

D. The lack of non-functional requirements resulted in software that uses an unreasonable amount of resources and
results in slow synchronisation speeds. And since everything is monolithic it is difficult to turn off indexing of
data which is not required by our customers there is no way to limit the required resources.

E. The same lack of a specification and non-functional requirements makes the testing feel ad-hoc and like an
afterthought.

The Chain Index was meant to be a software application that supports the execution of smart contracts. And, in that, it
succeeded. However, we found that our customers would rather have a library of functionality that they can customize
to do the following:

• to build their own indexers,

• to work only with the data that they care about for their application,

• to use whatever storage engine they prefer, and

• to support only the queries that they need to support.

So when we took all the feedback into account we decided that a redesign of the indexing solution using a much
simplified and modular design is a worthwhile enterprise.

We continue by introducing some of the design principles that guided us in the specification of Marconi.

126 Chapter 5. Public Plutus libraries documentation

mailto:radu.ometita@iohk.io


Plutus Tools SDK User Guide, Release 1.0.0

Design principles of Marconi

We follow the Algebra Driven Design approach for Marconi components, so from the get-go, we will have a checked
specification for the software that we develop.

The specification is based on a simplified model which should help with documenting how everything works without
getting into the more complex details.

Having a set of property-based tests to validate that the implementation conforms to the specification also means that
the correctness of the implementation does not rely on type-level checks or complicated term-level machinery (we
could even verify the correctness of a Rust implementation by leveraging the Rust to Haskell FFI).

Because we have no reliance on type-level checks or complicated architectural patterns to validate the software (we
use the specification and property tests for that), the code is much easier to understand, document and extend.

Indexing solution

The indexing solution has the following basic requirements: it needs to deal with rollbacks as elegantly as possible
and provide a way to compromise between memory, disk and CPU usage.

On the Cardano blockchain, there are frequent rollbacks, but they can only span a maximum of 2160 blocks (and most
of them are < 10 blocks). We call the 2160 number the security parameter K (and we denote it by ‘K’ henceforth).

Indexers are a store which is updated by events created from each block. The problem introduced by rollbacks is that
we need to undo all state changes when a rollback occurs.

We opted for a design where we keep K blocks in memory as the list of events that are fed into the function that stores
them once they go beyond the K limit.

This architectural decision has some desirable effects:

1. Managing rollbacks is very simple and fast. We drop the events that were rolled back. (No need to undo the
application of blocks on the state stored on disk, which would be necessary if we were to store everything on
disk as fast as possible).

2. Making ‘K’ configurable makes the design already quite scalable. Developers do not usually need to guard
themselves against rollbacks by K blocks so they can choose to store 10 events in memory allowing for chain
desynchronisation in the unlikely event that a rollback occurs beyond the 10 blocks limit.

3. In case of a restart recovery is very simple. If the selected K parameter is properly set, we store only fully
confirmed transactions so there is nothing to do other than resume operation.

And some less desirable effects:

1. We must keep K events in memory, which (depending on how large events are) can waste some memory. Our
educated guess is that this is a reasonable compromise, but depending on how large events can get that may not
be the case for your use case.

2. Queries are more involved as we need to scan events in memory and the state persisted on disk.
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Query and storage

The indexed data is accessible through queries. There are no constraints on the format of queries or results. Both are
identified by a type variable that the indexer exposes and the implementation of the result and query datatypes and the
store and query functions can be provided by the user. One of the complications of this query implementation is that
a query has to run on the merged data from memory and disk.

The possibility of defining the query and store functions allows us to associate any kind of storage type to the indexers,
though, right now we are only using SQLite.

Identification of events

We need a way to provide an answer to the question: How much of the stream has been consumed by the indexer? We
choose to do that by associating a sequence number to incoming blocks, and carrying it along the stream of events.
Having a way to answer this question is connected to the following features which we plan to implement:

1. Synchronisation of multiple indexers (queries have a validity interval)

2. Resume functionality (we need to know from which slot to resume)

3. Handling of rollbacks (now there is explicit handling of rollbacks)

More information will become available in the next few sprints.

Event streams

To support PAB functionality which subscribes to a source for a set of event types, we need a way to produce events
from indexers.

They are also very useful for contracts that want to track rollbacks. Rollbacks are invisible from the point of view
of the indexed data, but it may be the case that the internal state of a contract needs to know that the state has been
reverted.

5.5.5 ADR 5: PAB and indexing component integration

Date: 2022-07-27

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Proposed
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Context

Let’s start with the problematic example (copy-paste of the current PubKey contract in plutus-use-cases).

-- | Lock some funds in a 'PayToPubKey' contract, returning the output's address
-- and a 'TxIn' transaction input that can spend it.
pubKeyContract

:: forall w s e.
( AsPubKeyError e
)
=> PaymentPubKeyHash
-> Value
-> Contract w s e (TxOutRef, Maybe ChainIndexTxOut, TypedValidator PubKeyContract)

pubKeyContract pk vl = mapError (review _PubKeyError ) $ do
-- Step 1
let inst = typedValidator pk

address = Scripts.validatorAddress inst
tx = Constraints.mustPayToTheScriptWithDatumHash () vl

ledgerTx <- mkTxConstraints (Constraints.typedValidatorLookups inst) tx
>>= submitUnbalancedTx . Constraints.adjustUnbalancedTx

-- Step 2
_ <- awaitTxConfirmed (getCardanoTxId ledgerTx)

-- Step 3
let refs = Map.keys

$ Map.filter ((==) address . txOutAddress)
$ getCardanoTxProducedOutputs ledgerTx

case refs of
[] -> throwing _ScriptOutputMissing pk
[outRef] -> do

-- Step 4
ciTxOut <- unspentTxOutFromRef outRef
pure (outRef, ciTxOut, inst)

_ -> throwing _MultipleScriptOutputs pk

Here’s an outline of the contract’s steps:

1. Creates a transaction and submits it to the node

2. Waits for transaction to be confirmed

3. Finds the first UTXO of that transaction (return type TxOutRef )

4. Queries the plutus-chain-index to get the ChainIndexTxOut out of that TxOutRef

The problem is that the ciTxOut variable in step 4 will almost always result in Nothing.

Why? Here’s some context.

The PAB listens to the local node and stores blockchain information in memory such as the status of transactions, the
status of transaction outputs, the last synced slot, the current slot, etc., in a variable of type BlockchainEnv. The await-
TxConfirmed is actually querying the state of BlockchainEnv and waits until the status of the transaction transitions to
Confirmed.

Meanwhile, plutus-chain-index (our main indexing component at the time of this writing) is also listening to incoming
blocks from the local node and indexes them into a database. The indexed data can be queried using the REST API
interface.

This brings up the main issue: the PAB and plutus-chain-index each listen to the same source of information (a local
Cardano node), but each index the information at different speeds. For a dApp developer writing off-chain code using
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the Contract API, there is no abstraction for handling multiple sources of truth.

Currently, in the best case scenario (fully synced PAB and plutus-chain-index), plutus-chain-index will always trail
behind the in-memory storage of the PAB by a few seconds. Therefore, even in this scenario, querying the plutus-
chain-index with unspentTxOutFromRef in the above contract has a high probability of returning Nothing.

Decisions

The best solution is probably a combination of the Alternative solutions described below. However, we will mainly
choose the Query functions should interact with a single source of truth solution.

• We will replace plutus-chain-index with Marconi as PAB’s indexing component

• We will move out the blockchain information indexed by PAB in Marconi

• We will add new indexers in Marconi in order to replicate the information indexed by plutus-chain-index

• We will adapt the architecture of Marconi (which will become our new indexing component) to support waiting
queries

• Since we suppose that indexing component should be in the same machine as the PAB, then we will use Marconi
as a library to index and query the indexed blockchain information without relying on an HTTP API

Alternative solutions

In this section, we describe all the ways to deal with the problem. Note that final decision might include one or more
of these alternate solutions.

Make sure all components are in sync

We can make sure that all indexing components are syncing at the same speed. For example, if PAB syncs from the
local node and arrives at slot 100, then it needs to wait for the chain-index to also arrive at slot 100. Only then can it
respond to a Contract request.

A simply way to achieve this behavior is to change the implementation of Contract API handler functions (like utxosAt,
unspentTxOutFromRef, etc.) by waiting for the component to be in sync with all other components. For example, let’s
take the utxosAt request which basically queries UTXOs from a given address using plutus-chain-index. We could,
before querying, wait for plutus-chain-index to be in sync with all components which index blockchain data (PAB,
Blockfrost).

Pros:

• All the indexed information is consistent with each other

Cons:

• As fast as the slowest indexing component

• Tight coupling between the indexing components meaning that if the Contract only uses chain-index requests
without using requests from other indexing components, the chain-index will still have to wait for all other
components to be in sync with each other
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Add indexing specific functions in the Contract API

In this scenario, we would need to split Contract API requests which interact with an external indexing component to
the ones that use the PAB. Currently, we have awaitTxConfirmed which uses the indexed information in the PAB to wait
for a transaction status to change to Confirmed. On top of that, we can have awaitTxIndexed or awaitTxOutIndexed
which will wait for the information to be indexed in the external indexing component.

Pros:

• Limits design change on the PAB

• More control given to the user of the Contract API

Cons:

• Adds an undesired complexity to the Contract API

• We’ll need to add a bunch of functions (e.g., currentNodeSlot, currentMarconiSlot, awaitMarconiTxConfirmed,
`awaitScrollsTxConfirmed, etc.) for each new indexing component we want to support

Query functions should interact with a single source of truth

In this scenario, we make the design decision that the Contract API should only interact with a single indexing com-
ponent. Thus, any blockchain information currently stored in the PAB should be moved to the indexing component.
Also, combining indexing components would need to be integrated in the single indexing solution that’s connected to
the PAB.

Pros:

• Simplest in design to implement (other than manual work to move code)

• No modification to the Contract API

• Augments PAB’s cohesion, because it’s responsability will be limited to contract instance management

Cons:

• The design of the indexing component will need to be changed to support waiting queries (like the awaitTxCon-
firmed from PAB)

• Still under the assumption that the indexing component is in sync with the PAB in order to use some querying
functions

Implications

Having a single source of truth indexer will augment the PAB’s cohesion and greatly simpy the plutus-pab codebase.
Also, we will not encounter the situation where we have multiple indexers that index at different speeds.

However, there is still the problem that the indexing solution might not be in sync with the local node. Therefore, we
need to make another decision on how to deal with it.
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Notes

This problem manifested itself in the Github issue #473 and there was a temporary fix in the PR #496. However, the
proper solution to the issue would be the implementation of this ADR.

This ADR has been discussed here: #550.

5.5.6 ADR 6: Common Contract API

Date: 2022-07-12

Authors

Gergely Szabo <gergely@mlabs.city>

koslambrou <konstantinos.lambrou@iohk.io>

Status

Proposed

Context

There are multiple implementations of a Plutus Application Backend (PAB) external of IO Global, and also other tools
related to Plutus smart contracts. Some of them are using the same contract interface as the official implementation,
but some of them use a different interface. However, as the ecosystem evolves, it would be beneficial to create a well
defined standard, that other off-chain tools can use as a reference, or as an interface to implement.

Currently, as we are getting close to the Vasil hardfork, testing tools and Plutus Application backend tools are at a
hurry to update their dependencies and get to a Vasil compliant/compatible state. However, tools that are depending
on plutus-apps are blocked by the PAB development. This initiative was born out of this context, but could solve other
problems as well.

The Contract API (defined in plutus-apps/plutus-contract) is using the freer-simple effect system to define all the
contract effects. This already allows us to separate the interface from the implementation, and to have multiple
implementations/interpreters for one interface. Currently, there are two implementations for the Contract API:

• one for the plutus-apps emulator (inside plutus-apps/plutus-contract)

• one for plutus-apps’ Plutus Application Backend (inside plutus-apps/plutus-pab)

Therefore, we can leverage this separatation of interface and implementation in order to move the interface out of
plutus-apps.

Decision

• We will split the plutus-apps/plutus-contract package into two parts: the Contract API (plutus-contract) and the
emulator (plutus-contract-emulator).

• We will create effects for the constraints-based transaction builder library (plutus-apps/plutus-ledger-
constraints) in the Contract API. Currently, the interface and the implementation in the transaction builder
library are tightly coupled. Therefore, we need to decouple them.
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• We will create a separate repository with the contract effects and types (the splitted plutus-contract). By moving
the Contract API out of the plutus-apps monorepository, any tool could update to newer version to their discre-
tion. Without many dependencies, many tools could utilize the Contract API without having to depend on the
whole plutus-apps monorepo.

• We (the Plutus Tools at IO Global) will continue to be the main maintainers of this new repository. However, a
new ADR will need to be created if we ever decide to make this a community driven project.

• TODO: What about governance? How do we decide which interface changes are accepted? ADRs? Who
ultimately accepts and rejects them?

Argument

We speed up the development of off-chain tools, by loosening up some of tightly coupled dependencies, so these
external projects can move more freely. This would also mean that the cost of the interface update would be reduced,
so we could see more features added to the standard, and the PAB API following the capabilities of Cardano more
closely. As an added benefit, community involvement with the API could also greatly improve.

A standard API for all Plutus contacts would help keeping the ecosystem on the same track with their implementation.
As more and more off-chain tools implement the same contract interface in the future, it will be relatively easy to
switch between different Plutus Application Backend implementations, or to use multiple of these tools at the same
time without a need for serious code rewrites.

The implementation of the Contract API interface would track a specific version of the Contract API interface. We
would then need to regularly update the implementation given any interface changes.

Implications

• We will need to decide if we should make this a community driven project. If so, we will also need to make a
decision about governance. How do we decide which interface changes are accepted? Do we use ADRs? Who
ultimately accepts and rejects them?

Notes

This ADR has been discussed here: #586.

5.5.7 ADR 7: Support reference inputs in constraint library

Date: 2022-08-09

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>
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Status

Accepted

Context

After the Vasil HF, the Cardano blockchain will support reference inputs by adding a new field in the transaction data
type. With reference inputs, transactions can take a look at UTXOs without actually spending them.

Thus, we need to adapt our transaction constraint data type (TxConstraints) to support referencing UTXOs.

Decision

• We will add the data constuctor MustReferenceOutput TxOutRef to the TxConstraints data type.

• The PlutusV1 on-chain implementation of this new constraint will simply return False. However, cardano-
ledger throws a phase-1 validation error if transactions that use the some of the new features (reference inputs,
inline datums and reference scripts) try to execute PlutusV1 scripts. See the Babbage era ledger specification.
Therefore, the only way to get a phase-2 validation error would be to use this constraint on-chain in a PlutusV1
script, without using any of the new Babbage era features off-chain.

• The PlutusV2 on-chain implementation of this new constraint will check that the provided TxOutRef is part
of the ScriptContext’s reference inputs.

Argument

At first glance, we might think that we need two data constructors for reference inputs such as
MustReferencePubKeyOutput and MustReferenceScriptOutput in contrast to the existing
MustSpendPubKeyOutput and MustSpendScriptOutput constraints. However, we do not need to
make the distinction between public key outputs and script outputs because we’re not spending the output, therefore,
we don’t need to provide a redeemer nor the actual script as a witness to the transaction input.

Notes

This ADR has been addressed in the PRs #640 and #661.

5.5.8 ADR 8: Support inline datums in constraint library

Date: 2022-08-14

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>
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Status

Proposed

Context

In Babbage era (available after the Vasil HF), the Cardano blockchain will support inline datums by changing the
TxOut data type.

In Alonzo era, a TxOut was able to store arbitrary data called the datum. However, only the hash of the datum was
stored, not the actual datum.

With inline datums available in Babbage era, transaction outputs can either contain the hash of the datum or the actual
datum. Thus, we need to adapt our transaction constraint data type (TxConstraints) to support this new feature.

Decision

• We will replace the Datum parameter in TxConstraints’s data constructor
MustPayToPubKeyAddress with Plutus.V2.Ledger.Api.OutputDatum. In the offchain
implementation of the constraint, we will use this new data constructor parameter to support either adding the
datum in the datum witness set (by using the datum lookups to resolve the hash) or inline it in the transaction
output. In the PlutusV1 on-chain implementation of the constraint, we will return False if the datum value
matches OutputDatum Datum because the ledger forbids using Babbage era features with PlutusV1. The
PlutusV2 on-chain implementation of the constraint is trivial.

• We will modify the data constructor interface, on-chain implementation and off-chain implementation of
MustPayToOtherScript similarly to MustPayToPubKeyAddress.

• We will modify the off-chain implementation of the data constructor MustSpendScriptOutput in order
to support inline datums. Currently, the script output’s datum is added in the transaction’s datum witness set.
However, if the datum is inlined in the script output, then it is already witnessed. Therefore, we don’t need to
add it in the datum witness set.

Argument

The main decision was to find out which data type will replace Datum in the interface of
MustPayToPubKeyAddress and MustPayToOtherScript. The decision to use Plutus.V2.
Ledger.Api.OutputDatum was mainly because of the constraint library’s main design: the parameters
of TxConstraints’s data constructor must work with the on-chain as well as the off-chain implementation.
Therefore, we decided to use OutputDatum which we know works in on-chain code because this type is used in
Plutus.V2.Ledger.Api.ScriptContext.

Notes

5.5.9 ADR 9: Support reference scripts in constraint library

Date: 2022-08-15
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Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Accepted

Context

In Babbage era (available after the Vasil HF), the Cardano blockchain will support “reference scripts” by changing the
TxOut data type. Reference scripts are used to attach arbitrary scripts to transaction outputs and are used to satisfy
script requirements during validation, rather than requiring the spending transaction to do so. Thus, we need to adapt
our transaction constraint data type (TxConstraints) to support this new feature.

Decision

• We will add Maybe ScriptHash as a new data constructor parameter for the constraints
MustPayToPubKeyAddress, MustPayToOtherScript, ScriptOutputConstraint in
TxConstraints. In the off-chain implementation of those constraints, if a reference script hash is
provided, we will need to find the actual script in the lookups table so that we can include it in the transaction
output. In the PlutusV1 on-chain implementation of the constraint, we will return False if a reference script
is provided because the ledger forbids using Babbage era features with PlutusV1. The PlutusV2 on-chain
implementation of the constraint is trivial.

• We will modify the off-chain implementation of MustSpendScriptOutput and
ScriptInputConstraint in order to add support for witnessing a script by actually providing it,
or by pointing to the reference input which contains the script.

Argument

The main decision was to find out which data type will represent reference scripts. Similarly to ADR 8: Support inline
datums in constraint library, the decision to use Maybe ScriptHashwas mainly because of the constraint library’s
main design that data types need to work with on-chain as well as off-chain implementation.

Notes

This ADR has been addressed in PR #662, #666 and #678

5.5.10 ADR 10: Rolling back on-disk data for Marconi indexers

Date: 2022-08-05
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Author(s)

Ometita Radu <radu.ometita@iohk.io>

Status

Draft

Context

Off-chain code needs access to indexed portions of the blockchain. Currently, we have a working solution in the form
of the chain-index and PAB (which both index information). The big problem with the current solution is its lack of
reuse (or modularity) capability.

We attempt to fix that problem with Marconi where we currently have a generic indexer that stores volatile information
in memory and blocks that have been fully committed (are old enough to guarantee that they will not be rolled back) on
disk. The K blockchain parameter represents how many blocks deep the blockchain becomes immutable (no rollbacks
can occur beyond K blocks).

We currently need to keep K blocks in memory to be able to perform rollbacks. However, the K parameter can be
adjusted for indexers which land us in the unfortunate position of saying that there may be data corruption in the
case where the number of rollbacked blocks is larger than the number of blocks stored in memory. While this is both
detectable and unlikely to happen we think that our current solution can prevent it without any significant drawbacks.

Decision

After receiving feedback on the initial implementation of the PAB and chain-index we needed a generic way of
indexing information where we can control the amount of memory the indexer uses. The first version of indexers store
the volatile blocks in memory and persist them to disk whenever they become older than the K parameter.

We make a distinction between the volatile blocks which are stored in memory as events (and are derived from blocks).
We fold these events into the aggregated on-disk data structure for which we do not require to keep multiple versions
(rollbacks cannot happen for this data structure).

We improve on that idea by allowing part of the volatile blocks to be stored on disk. While this is not required at the
API level, the usage pattern would be to have a set of events, as well as the aggregated data structure stored on disk.
The compromise here is that the more data is on the disk, the more we will need to work with the disk and the slower
the indexing process will become. The advantage would be reduced memory usage.

Events

Events need to contain information about the slot number and block id when they were produced.

The slot number information is used in case of rollbacks (when we only get the old slot number that we need to
rollback to) and for resuming the operation of the index, in which case we need both the slot numbers and block ids.

Note that to support resume from disk we need to always have at least one event persisted on disk which contains the
slot number and block id from which we are supposed to resume operation. In case there are more than one events
stored on disk we can use those as resume alternatives in the case of the ChainSync protocol.
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Queries

We also extend the queries with a bit more structure that will make specifying query validity intervals possible. The
validity is important in the case where we want to query several indexers and we would like them to require to have
processed all the information up to some slot number or be between some slot interval.

At this point all query results are synchronous. We have plans to extend this functionality, but these plans are based
on updating the notification system for indexers which will be described in a further ADR.

API Design

We want the API for our users to be as flexible as possible, so some of our previously mentioned design patterns are
not captured by the API, but rather by its implementation.

Data types

• The Events data type contains the following fields:

– Slot numbers (a data type that supports ordering)

– Block id (a data type that supports equality checking)

– e (type variable standing for the event)

• The Query data type contains the following fields:

– Validity interval (can be any interval defined by using the slot numbers or a special value that turn off
checking for validity)

– q (type variable standing for the query)

• Result

– Slot number at which the query was ran

– r (type variable standing for the query result)

Functions

• The Query function takes the following parameters:

– Indexer - The indexer that we are using to run the query.

– Validity interval - The interval under which the query needs to be ran.

– The query (q type variable) - The user-defined query.

– The query result

• The Store function takes the following parameters:

– Indexer - The indexer for which we run the function

– Does not return anything useful

• The Resume function takes the following parameters:

– Indexer - The indexer we need to query for the last consumed slot numbers

– Returns a list of slot numbers and block ids
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Runtime parameters

• Minimum events retained (this should be the previously mentioned K parameter)

Currently the main cardano network guarantees that there will be no rollbacks beyond 2160 blocks. This would
be that parameter.

• Maximum in-memory events (should be less than K)

How many events do we want to keep in memory. For the main network this should be any number lower that
2160. The larger the number the less frequent writing to disk is and the more RAM is used.

Extension mechanisms

A. Storage engine

You can customise the query and store functions which run in some generic monad to use whatever backend is best
for the job. We currently use SQLite, but that is more for convenience than anything else.

B. Query intervals

If you want to specify an interval for your queries (which is highly encouraged) then you need to have in memory (or
on disk) sufficient information to reconstruct the state at the given slot number. The information required is contained
in the event (which includes the slot number). By storing more than K events you can extend the query interval as
much as you need. In extreme, you can store events without ever aggregating and deleting them, in which case your
queries can span the whole blockchain.

Implementation

This is the way we suggest people implement storage for the indexers:

| Memory | Disk |
|--------|--------|-----------|
| Events | Events | Aggregate |

To support the resume function we need to always have at least one event stored on disk. This is an invariant that an
implementation can keep by ensuring that the number of in-memory events is less than K.

Since the number of events stored in memory is constant we can keep on using a ring buffer backed by the vector
library.

Events are moved into storage whenever the in-memory buffer becomes full. When they are moved into storage we
also need to decide what we are folding into the stored aggregated data structure. We should never fold any events that
are newer than K blocks.

We suggest using type families for the implementation due to the functional dependencies between the handler type
and the monad that the indexer runs in, as well as the dependency between the query type and the result type (and in
the future the notification type).
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5.5.11 ADR 11: Support return and total collateral when building transactions

Date: 2022-08-30

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Proposed

Context

In Babbage era (available after the Vasil HF), Cardano transactions will contain new collateral related fields: “return
collateral” and “total collateral” collateral. Return collateral (also called “collateral output”) and total collateral are
detailed in CIP-40.

In summary, return collateral is a special output (basically of type TxOut) that becomes available in case there is a
failed phase-2 validation. In addition, we have the new total collateral field which explicitly says how much collateral
(in lovelace) is going to be actually consumed in the case of phase-2 validation failure.

Decision

• We will add the txReturnCollateral and the txTotalCollateral fields in the Ledger.Tx.Internal.Tx
data type.

• We will modify the Wallet.Emulator.Wallet.handleBalance function in plutus-contract to set
the correct return and total collateral for an UnbalancedTx (of type Either CardanoBuildTx
EmulatorTx). In either type of transaction, we would compute the txTotalCollateral while estimat-
ing the fee with the formula quot (txfee txb * (collateralPercent pp)) * 100 and then set
txReturnCollateral with the formula sum collateralInputs - txTotalCollateral.

Argument

As the user would want to pay the least amount of collateral, we made the decision to modify the balancing algorithm
to automatically set the return collateral to the highest possible value.

Alternatives

The main alternative would have been to add a new constraint such as MustReturnCollateral TxOut in the
constraints library to allow the users to specify the return collateral themselves. However, as explained in the Argument
section, users would always want to pay the least amount of collateral. Therefore we don’t expect the need to set the
return collateral manually.
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Notes

5.5.12 ADR 12: Commit to data types in cardano-api

Date: 2022-10-03

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Draft

Context

Since the genesis of the plutus-apps repository, the components have been historically using the types in the
plutus-ledger-api package (which is now part of the plutus repository) in the off-chain part of a Plutus
application.

This was desirable in order to start designing a way to build Plutus applications before the cardano-ledger
actually supported the Alonzo-era features. Of course, this resulted in the unintended consequence that we used
TxInfo types (types that are designed to be used in Plutus scripts) in off-chain code. This wouldn’t have been a
problem if there was a 1:1 relationship between on-chain and off-chain types. However, that presumption is wrong.

Let’s take the example of the TxOut representation of plutus-ledger-api for PlutusV2.

data TxOut = TxOut {
...
txOutReferenceScript :: Maybe ScriptHash
}

As we can see, the TxOut can optionally store the ScriptHash of the referenced script. However, that is not
the adequate representation of a TxOut in a transaction given the cardano-ledger specification. The off-chain
TxOut should instead be:

data TxOut = TxOut {
...
txOutReferenceScript :: Maybe Script
}

where the reference script field can store that actual script, not just the hash.

This proved that we need to start moving away from plutus-ledger-api types in the off-chain part of Plutus applications,
especially in components like the emulator and the chain indexer.
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Decision

• We will create a cardano-api-extended cabal project, which will contain features and utilities on top of
the cardano-api package. A similar idea has emerged with hydra-cardano-api. This package will contain:

– type synonyms for working with the latest era

– a simplified and working transaction balancing function (mainly the Ledger.Fee.
makeAutoBalancedTransaction in plutus-apps)

– validation rules (most of what’s in the current Ledger.Validation)

The cardano-api-extended package will re-export the modules from the hydra-cardano-api package
which contain type synonyms for working with the latest era.

• We will remove our data type representation of a Cardano transaction (Ledger.Tx.Internal.
Tx in plutus-ledger) and fully commit to Cardano.Api.Tx.Tx era (or Cardano.Api.Tx.
TxLatestEra) in the codebase.

• We will replace any use of plutus-ledger-api types by cardano-api and
cardano-api-extended types whenever we work with the off-chain part of Plutus applications.
For instance, the plutus-contract emulator and types in the Plutus.Contract.Request module
of plutus-contract will be updated to use cardano-api types. However, the data types in Ledger.
Tx.Constraints.TxConstraints will continue to use plutus-ledger-api types because the
constraints are used to generate both Plutus scripts and transactions. Therefore, there should be no breaking
change on the API for writing Plutus applications.

• We will improve cardano-api through cardano-api-extended and regularly push changes upstream
when possible.

• We will restructure the Ledger.Tx.CardanoApi module in plutus-ledger and move functions in
cardano-api-extended.

• We will enhance the plutus-contract emulator by being able to balance and submit cardano-api
transactions.

• We will modify the plutus-contract emulator to fully use the cardano-ledger transaction validation
rules, and we will remove our custom validation rules (module Ledger.Index in plutus-ledger).

Argument

The cardano-api package is expected to be the supported entry point for clients to interact with Cardano chain in
Haskell in the foreseeable future. Therefore, we should extensively use this package and upstream changes as much
as possible so that users not using the packages in plutus-apps can still have a good experience writing Plutus
applications using cardano-api.

The main arguments for creating the cardano-api-extended package instead of using hydra-cardano-api di-
rectly are:

• faster iterative development for extending cardano-api

• existing plans to upstream the hydra-cardano-api in cardano-api
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Alternatives

Define our own data types for off-chain use

This is currently what the plutus-apps repository is partially doing. The main problem is that this requires signif-
icant maintenance work, especially when the cardano-ledger specification changes between eras.

Implications

• This decision should not impact the user-facing API of our libraries. All the changes should be internal. Changes
to the public-facing API should be part of a separate ADR.

• Any orphan instances that we currently have in plutus-ledger will need to be moved to
cardano-api-extended.

• The Marconi-related packages will need to work with cardano-api types instead of
plutus-ledger-api types, as Marconi is a full off-chain component. This implies removing the
plutus-ledger dependency that we currently have in marconi.

Notes

5.5.13 ADR 13: Transaction validity time range fix

Date: 2022-10-19

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Draft

Context

The following code samples were executed with cabal repl plutus-ledger on the plutus-apps commit hash
172873e87789d8aac623e014eff9a39364c719ae.

Currently, the plutus-ledger-constraint library has the MustValidateIn constraint which

1) validates that a given POSIXTimeRange` contains the TxInfo’s validity range

2) creates a transaction with the provided POSIXTimeRange

The implementation of 1) is trivial. However, a major issue arises for the implementation of 2). Setting the validity
interval of a Cardano transaction is done by specifing the slot of the lower bound and the slot of the upper bound.
Therefore, the MustValidateIn constraint needs to convert the provided POSIXTimeRange to essentially a
(Maybe Slot, Maybe Slot). The problem is that there are many ways to convert a POSIXTime to a Slot.

Currently, provided a POSIXTimeRange, plutus-contract does the following:

• convert the time range to a slot range with Ledger.TimeSlot.
posixTimeRangeToContainedSlotRange :: POSIXTimeRange -> SlotRange
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• convert the SlotRange to (Cardano.Api.TxValidityLowerBound, Cardano.Api.
TxValidityUpperBound) (essentially a (Maybe Slot, Maybe Slot))

The issue with these conversion is that the POSIXTimeRange and SlotRange intervals are type synonyms of
the PlutusLedgerApi.V1.Interval.Interval a datatype which has has a “Closure” flag for each of the
bounds.

Therefore, the conversions yields a discrepency when cardano-ledger converts the (Cardano.Api.
TxValidityLowerBound, Cardano.Api.TxValidityUpperBound) to a POSIXTimeRange when
creating the TxInfo.

Let’s show some examples to showcase the issue.

> let sc = SlotConfig 1000 0
> let interval = (Interval (LowerBound (Finite 999) False) (UpperBound PosInf True))
> let r = posixTimeRangeToContainedSlotRange sc interval
> r
Interval {ivFrom = LowerBound (Finite (Slot {getSlot = 0})) False, ivTo = UpperBound
→˓PosInf True}
> let txValidRange = toCardanoValidityRange r
> txValidRange
Right (TxValidityLowerBound ValidityLowerBoundInBabbageEra (SlotNo 1),
→˓TxValidityNoUpperBound ValidityNoUpperBoundInBabbageEra)

When creating the TxInfo, cardano-ledger will convert the previous cardano-api validity slot range to:

(Interval (LowerBound (Finite 1000) True) (UpperBound PosInf True))

In practical reasoning, LowerBound (Finite 999) False and LowerBound (Finite 1000) True
are equal considering the precision of 1000 milliseconds per slot. However, given Interval semantics, these
are not the same values. Therefore, if the constraint mustValidateIn interval is used both to create a
transaction and inside a Plutus script (corresponds to the check interval `contains` txInfoValidRange
scriptContextTxInfo), then the Plutus script will yield False.

We can identify a similar behavior with the upper bound.

> let sc = SlotConfig 1000 0
> let interval = (Interval (LowerBound NegInf True) (UpperBound (Finite 999) True))
> let r = posixTimeRangeToContainedSlotRange sc interval
> r
Interval {ivFrom = LowerBound NegInf True, ivTo = UpperBound (Finite (Slot {getSlot =
→˓0})) True}
> let txValidRange = toCardanoValidityRange r
> txValidRange
Right (TxValidityNoLowerBound,TxValidityUpperBound ValidityUpperBoundInBabbageEra
→˓(SlotNo 1))

When creating the TxInfo, cardano-ledger will convert the previous cardano-api validity slot range to:

(Interval (LowerBound NegInf True) (UpperBound (Finite 1000) False))

Again, a Plutus script with interval `contains` txInfoValidRange scriptContextTxInfo will
yield False.

Additionnaly, the current behavior makes it hard to reason about how a POSIXTime gets translated into a Slot when
creating a transaction. Ultimately, a DApp developer should have control over how his POSIXTime gets translated to
a Slot.

144 Chapter 5. Public Plutus libraries documentation



Plutus Tools SDK User Guide, Release 1.0.0

Decision

• We will create the following datatype:

-- | ValidityInterval is a half open interval. Closed (inclusive) on the bottom,
→˓open
-- (exclusive) on the top. A 'Nothing' on the bottom is negative infinity, and a
→˓'Nothing'
-- on the top is positive infinity.
data ValidityInterval a = ValidityInterval
{ invalidBefore :: !(Maybe a) -- ^ Inclusive lower bound or negative infinity
, invalidHereafter :: !(Maybe a) -- ^ Exclusive upper bound or positive infinity
}

• We will add the following constraint and smart constructor:

data TxConstraint =
...
MustValidateInTimeRange !(ValidityInterval POSIXTime)

mustValidateInTimeRange :: !(ValidityInterval POSIXTime) -> TxConstraints

• We will remove the MustValidateIn constraint and deprecate the the mustValidateIn smart construc-
tor which will be replaced by mustValidateInTimeRange.

• We will create the smart constructor

mustValidateInSlotRange :: !(ValidityInterval Slot) -> TxConstraints

which will translate the provide validity slot range into a POSIXTimeRange using Ledger.TimeSlot.
posixTimeRangeToContainedSlotRange.

Argument

• The new mustValidateInTimeRange constraint will solve the discrepency between the way the valid-
ity constraint range converts a POSIXTime to a Slot and how cardano-ledger converts the Slot to
POSXITime when creating the TxInfo.

• However, it won’t solve the issues when the provided POSIXTimeRange is not an unit of 1000 mil-
liseconds. For this scenario, we provide the mustValidateInSlotRange which will always create
POSIXTimeRange that is an unit of 1000 milliseconds.

• Another benefit of the mustValidateInSlotRange constraint is to give control to the users on how to
convert their times in POSIXTime to a Slot.

Implications

• We will have to update the plutus-use-cases examples to use mustValidateInSlotRange when
creating transactions, but still use POSIXTime or POSIXTimeRange when defining the parameters (inputs)
of the use cases. Same for end-users.
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Alternatives

Add MustValidateInSlotRange constraint

If we decide to go in the direction of only specifying slots when creating transaction, then a logical solution would
be replace the MustValidateInTimeRange constraint by MustValidateInSlotRange (Maybe Slot)
(Maybe Slot). However, the main issue with this solution is that this constraint would not work in a Plutus
script, because there is no way to convert the POSIXTimeRange validity range of a TxInfo to a (Maybe Slot)
(Maybe Slot).

Remove mustValidateInTimeRange

By defining mustValidateInSlotRange, we could decide to completly remove
mustValidateInTimeRange and force users to work with slots. However, unless we get clear feedback
from end-users, we will keep mustValidateInSlotRange until new evidence says otherwise.

Alter mustValidateInTimeRange

Another alternative solution would be to keep mustValidateInTimeRange, but with additonnal parameters
which would specify how to convert the (Maybe POSIXTime, Maybe POSIXTime) to a (Maybe Slot,
Maybe Slot). For example, given the lower (or upper) bound of the POSIXTimeRange, do we convert it to the
closest slot? Or do we convert it to the lower (or upper) bound slot that includes the POSIXTime? This can potentially
be discussed in a future ADR if there is value for end-users.

Notes

This ADR is motivied by the SealedBidAuction bug fix in the PR #767.

This ADR has been implemented here: #878.

5.5.14 ADR 14: Marconi Query Interface

Date: 2022-10-27

Author(s)

Kayvan Kazeminejad <kayvan.kazeminejad@iohk.io>

Status

Draft
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Context

Marconi provides a general solution for indexing the blockchain data. The query interface adds reporting capabilities
on top of Marconi for both Haskell and non-Haskell applications.

Decision

• We will build the interface on top of the Marconi indexer with minimal impact on the Marconi infrastructure

• The query interface may be used both as an executable or a Haskell library

• The query interface supports JSON-RPC 2.0 on top of HTTP

• The query interface provides reporting of both memory and disk storage of indexers as described in Marconi
implementation

Implications

• No changes to the marconi infrastructure

• we will remain with SQLite as our storage engine

5.5.15 ADR 15: Time conversion semantic change

Date: 2022-11-19

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Draft

Context

Currently, PAB users need to provide the SlotConfig in the configuration file, which is passed through to the
Contract API, which users can use to convert between a Slot and a POSIXTime. However, the current
SlotConfig representation supposes that the slot length is the same for all epochs in the Cardano blockchain,
which is not the case. For example, during the Byron era, the slot length was 20s, while from Shelley era and onwards,
the slot length is 1s. Therefore, the functions from the Ledger.TimeSlot module in plutus-ledger do not
compute the conversion between Slot and POSIXTime the right way. The current easiest way to compute the time
conversions is to query the local Cardano node on the consensus layer, which requires the ouroboros-consensus
dependency.
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Decision

• We will deprecate the Ledger.TimeSlot.SlotConfig type and all functions in the Ledger.
TimeSlot module using the SlotConfig. The only viable functions are the ones that convert between
Data.Time types and plutus types (types related to TxInfo).

• We will copy the Ledger.TimeSlot module in the emulator (ideally rename it) and keep it as an internal
module. Any functions not used by the emulator will be removed.

• We will move the Ledger.Paramsmodule inside the emulator as an internal module and modify the Params
datatype name to EmulatorParams.

• We will modify the Plutus.Contract.Request.getParams function to Plutus.Contract.
Request.getProtocolParameters. This implies modifying the name of Contract effect
GetParamsReq/GetParamsResp.

• We will create two pairs of effects in Plutus.Contract.Effect:

data PABReq =
...
| SlotToUTCTimeIntervalReq SlotNo
| UTCTimeToSlotReq UTCTime
...

data PABResp =
...
| SlotToUTCTimeIntervalResp (UTCTime, SlotLength) -- An alternative can be

→˓(UTCTime, UTCTime)
| UTCTimeToSlotResp SlotNo
...

• We will implement the emulator effect interpreter by simply using the SlotConfig for the conversions.

• We will implement the PAB effect interpreter by using the local node. There are multiple steps to implement
this:

– At startup, the PAB will query the EraHistory from the local node and store it in its local environment.

– We will implement the PAB interpreter by using the EraHistory alongside the consensus functions
wallclockToSlot and slotToWallclock. Here’s an example function of how to use them:

-- Calculate slot number which contains a given timestamp
utcTimeToSlotNo

:: SystemStart
-> EraHistory CardanoMode
-> Time.UTCTime
-> Either PastHorizonException SlotNo

utcTimeToSlotNo systemStart (EraHistory _ interpreter) time = do
let relativeTime = toRelativeTime systemStart time
(slotNo, _, _) <- interpretQuery interpreter $ wallclockToSlot relativeTime
pure slotNo

slotStart
:: SystemStart
-> EraHistory CardanoMode
-> SlotNo
-> Either PastHorizonException Time.UTCTime

slotStart systemStart (EraHistory _ interpreter) slotNo = do
(relativeTime, _) <- interpretQuery interpreter $ slotToWallclock slotNo
pure $ fromRelativeTime systemStart relativeTime
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However, we will also add an additional step. If the conversion returns PastHorizonException,
then there is a good probability that the EraHistory is out of date. The reason is that EraHistory
only encodes era information from the moment the user ran the query and it cannot predict the future. In
that case, if the PastHorizonException is returned, we will re-query the EraHistory of the local
node, replace the old value in the PAB environment, and retry the conversion. If it fails again, we return
the error message.

Argument

The solution to create new effects in Plutus.Contract.Effects has the nice property that the implementation
can differ depending on the environment. It allows us to keep using SlotConfig in the emulator, while using the
existing implementation provided by ouroboros-consensus when using a real Cardano node.

Implications

• We will have to update the plutus-use-cases examples to use those new conversion functions. The user
will not use SlotConfig to convert between slots and UTC time. He will instead need to use the new effects
defined by the Contract API.

Alternatives

Changing the representation of SlotConfig to the correct one

A good solution would be to reuse the Summary datatype from ouroboros-consensus which has the correct
representation. However, the emulator does not depend on ouroboros-consensus and adding it would incur
a large dependency footprint for such a simple need. Additionnaly, consensus doesn’t (and doesn’t want to) expose
the Summary, which is internal to the Interpreter datatype, which in turn is returned by cardano-api when
querying the local node for the EraHistory. Thus, even if we copy-pasted the Summary datatype in the emulator,
we would still need to find a way to query the Summary of ouroboros-consensus and convert it to our own
Summary.

The ideal solution would be coordinate with the maintainers of ouroboros-consensus to move out the Summary
datatype in a (small) consensus core module and find a way to reconstruct the Summarywhen querying the local node.
This should be done in the long term, but it is not our current focus.

Directly use EpochInfo in the emulator and Contract API

Another thought of solution would be to replace the use of SlotConfig which EpochInfo. However, we need
EpochInfo to be an instance of FromJSON/ToJSON, which is not possible because its data contructor parameters
are functions.
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Notes

5.5.16 ADR 16: Self-contained cardano-node emulator component

Date: 2022-11-23

Author(s)

koslambrou <konstantinos.lambrou@iohk.io>

Status

Draft

Context

The current plutus-contract Haskell package allows developers to write Plutus applications using the
Contract Monad. On top of that, the package contains a Plutus application contract emulator, a way to run those
contracts on a simulated environment so that they can be tested. The emulator in question contains multiple compo-
nents like the testing framework (including the ContractModel), the wallet emulator, a chain-index emulator and
the node emulator.:

+-------------------+ +-------------------+ +-----------------+
| Testing framework |<----+ Contract Emulator +---->| Wallet emulator |
+-------------------+ +-----+--------+----+ +--------+--------+

| | |
| | v

+----------------------+ | | +---------------+
| Chain index emulator |<--------+ +---------->| Node emulator |
+----------------------+ +---------------+

The main reason we can’t use a real wallet or node backend is because they are not fast enough to be able to run many
test cases using property tests with the ContractModel.

Now, we believe the node emulator to be a useful separate component that other testing framework can leverage for
being able to write fast test cases.

Decision

• We will create a new Haskell package named cardano-node-emulator.

• We will move node related functionality into this new package. Here are some modules (or parts of a module)
that will need to be moved over.

– The Ledger.Validationmodule which validates transactions using cardano-ledger should only
be used by cardano-node-emulator and should not be exposed.

– The Ledger.Fee module, which calculates the fees for a given transaction, should be internal to
cardano-node-emulator.

– The Ledger.Generators module, which contains generators for constructing blockchains and trans-
actions for use in property-based testing, should be internal to cardano-node-emulator.
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– The Ledger.TimeSlot.SlotConfig datatype should only be used by the
cardano-node-emulator. An end user should not use this representation in a real world
scenario. See ADR 15: Time conversion semantic change for more details.

– The Wallet.Emulator.Chain module in plutus-contract should be moved in
cardano-node-emulator.

– The Ledger.Params which allows to configuration the network parameters should be moved over to
cardano-node-emulator.

Argument

Splitting out the node emulator in a separate Haskell component allows to better scope it’s dependency footprint. We
don’t want the list of dependencies to be too large in order to keep it as a lightweight component.

Notes

This ADR is addressed in PR #831.

5.5.17 ADR 17: End-to-end testing strategy for Plutus, cardano-ledger-api and
cardano-node-client

Date: 2022-12-02

Author(s)

james-iohk <james.browning@iohk.io>

Status

Draft

Context

End-to-end testing of Plutus Core functionality is currently performed by a combination of automation and exploratory
approaches, both are performed on public preview and pre-prod testnets using a real node. Automation test scenarios
for Plutus are currently being run as part of the wider cardano-node-tests test suite, which uses a Python wrapper for
cardano-cli. Those tests focus on general ledger/node/cli functionality and only cover a few key scenarios for
Plutus functionality, such as TxInfo and SECP256k1 builtins.

There is also ongoing development work to separate the functionality of cardano-api out into two packages:

• cardano-ledger-api handles the building and balancing of transactions.

• cardano-node-client will live in cardano-node and handle the submitting of balanced transactions and
querying the ledger state.

Both of these packages are in early stage development and will require end-to-end test coverage.

This document outlines the decisions and arguments for an additional approach to end-to-end test automation using a
framework written in Haskell.

The exploratory testing approach is not in the scope of this document.
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Decision

• We will create a new end-to-end testing framework written in Haskell called plutus-e2e-tests that will
initially be a package in plutus-apps, see argument 1.

• We will use cardano-testnet for configuring and initialising local test network environments, see argument 2.

• We will initially use cardano-api for building and balancing transactions, and to submit balanced transac-
tions and for querying the ledger, see argument 3.

• When available, we will use cardano-ledger-api instead of cardano-api for building and balancing
transactions, see argument 4.

• When available, we will use cardano-node-client instead of cardano-api to submit balanced trans-
actions and for querying the ledger state to make test assertions, see argument 5.

• We will prioritise Plutus test coverage over cardano-node, see argument 6.

• We will start by creating a few tests with the node/ledger apis without depending on plutus-apps and then
assess whether we want to use the Contract API and other off-chain tooling going forwards, see argument 7.

• We will continue adding a subset of Plutus tests to cardano-node-tests, see argument 8.

Types of Plutus tests for the plutus-e2e-tests Haskell framework

All Plutus end-to-end testing requirements will be covered by plutus-e2e-tests. In summary, with access
to the Haskell and Plutus interfaces and reduced friction from using a single programming language we are likely
improve test coverage at this level. For example, builtin functions and error scenarios.

Although we will be building out the end-to-end test coverage, it is more efficient to have fewer and broader test
scenarios at this level and a greater number of tests at the lower unit and integration levels for stressing particular
features and covering negative scenarios and edge cases.

Examples

• Any Plutus Core builtin function. These may already be tested extensively in the lower unit/property/integration
levels but there’s value in having some coverage at the end-to-end level too.

• Use cases that go beyond testing features in isolation. Bringing together various functionality helps demonstrate
the capability of more realistic Plutus applications.

• Functionality introduced by a new Plutus version. This could mean that ScriptContext changes to accom-
modate an extended transaction body.

• Functionality of old Plutus versions tested with each supporting script version. Tests for old Plutus version
functionality will also be run using the newer script versions.

Argument

1. The primary aim is to satisfy all of Plutus (core) end-to-end testing requirements, although, this is
an opportunity to also get coverage of other packages being developed such as cardano-testnet,
cardano-ledger-api and cardano-node-client. We can configure external packages and their ver-
sions using CHaPs so there is no need for plutus-e2e-tests to have its own repo. It will initially be be a
package in plutus-apps.

2. There are a few options for configuring and starting a private testnet (see local testnet notes section). We will
use cardano-testnet to enable dynamic configuration in Haskell, which makes it easier to design tests that
can also run in the emulated environment. Also, this is the approach officially supported by the node team.
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3. The plan is to start building tests with cardano-api because neither cardano-ledger-api or
cardano-node-client are at the required stage of development. This allows us to immediately proceed
with building out the framework and test suite.

4. The ambition of cardano-ledger-api is to be the go-to api for building transactions for application devel-
opers. The UX and overall quality of this component will benefit from being included in these end-to-end tests
because of the high-level perspective applied during its design and development. When ready we will begin
incorporating it as a replacement for cardano-api.

5. cardano-node-client will eventually replace cardano-api as a interface with consensus. As the
expected means to submit and query for application developers, it is a vital we include it under test in
plutus-e2e-tests. When ready we will begin incorporating it as a replacement for cardano-api.

6. Although cardano-ledger-api and cardano-node-client are under test it isn’t feasible to expect
thorough coverage of all ledger and node functionality, such as staking and update proposals, because the pri-
mary focus is to satisfy end-to-end testing requirements for Plutus. Fortunately, much of that functionality is
already being covered by cardano-node-tests.

7. Initially, a few tests will be created without depending on Plutus-apps. This entails building transactions with
cardano-ledger-api and waiting for on-chain events using cardano-node-client without use of
the Contract api or the constraints library. This approach allows us to build specific transactions, which is
especially useful for testing edge-cases and error scenarios that off-chain tooling may prohibit. However, this
approach will require more boilerplate code and this could negatively impact readability of the tests. Having
assessed this approach, we may then decide to depend on Plutus-apps for the Contract api, which would
give a uniform interface for off-chain code such as different node backends (private and public testnets, and
emulator) and chain-indexer queries (cardano-node-client or Marconi in future). It should also reduce
the amount of boilerplate code and provide additional features such as trace logging.

8. There’s value continuing to test cardano-cli with Plutus transactions for specific cli flags and the cli’s error
handling with script evaluation. Some examples of tests that should be covered:

• Cli flags that require use of Plutus scripts E.g. tx-out-reference-script-file or calculate-plutus-script-cost

• Cli behaviour when script evaluation passes. This could be displaying expected fee correctly.

• Cli behaviour when script evaluation fails. This can be how different types errors are formatted.

9. At some point, we may wish to incorporate the cardano-node-emulator as an alternative to
cardano-testnet. This would enable us to run property based tests due to the node being much faster
without consensus. With CHaP, cardano-node-emulator would be released as a separate component, so
no need to depend on Plutus-apps.

10. We reserve the option of including additional packages to test from Plutus-apps at a later stage.

Pros of building and maintaining our own test framework

• Plutus tools team will have full ownership of the end-to-end test environment and its priorities for Plutus.

• Plutus scripts can be defined alongside the tests. cardano-node-tests requires pre-compiled scripts.

• Tests will demonstrate how these Haskell packages can be used together to guide Plutus application development
using the node apis. Particularly useful for less experienced Haskell developers.

• Possible to define tests once and run at different levels. For example, on private or public testnets and with
cardano-node-emulator emulated node.

• Benefits from use of all Plutus apis. For example, using PlutusTx to produce scripts using a typed interface,
and optionally the Contract monad from Plutus-apps.

• Have the opportunity to add more components under test at a later stage, such as Marconi or a PAB.
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• cardano-cli would not be a dependency for Plutus test coverage so no risk of being blocked by its stage of
development.

• Less dependence on repetitive manual approach for regression testing because tests can be planned and imple-
mented in parallel with feature implementation and integration.

• Plutus team can implement and review majority of tests in Haskell rather than Python, which is likely to be the
team’s preference. Also won’t need to review as many tests in cardano-node-tests.

• Less friction caused by cross-team: planning, dependencies and expectations. Plutus team won’t need to wait
for node test team to implement the tests. It’s likely that other node/cli features will often be prioritised.

• This approach will improve our high-level perspective of each component and help guide UX improvements.

• Now that some plutus tests exist in cardano-node-tests the process for adding new tests will be rel-
atively straightforward, for some it’s mostly a copy/paste job. This means less work to support some duplicate
tests in both frameworks.

• Node team are not pressured to focus on Plutus scenarios, they retain control of their priorities.

Cons of building and maintaining our own test framework

• cardano-node-tests is well established and already has useful features such as: running tests in different
eras, transitioning between eras, reporting, and measuring deviations in script cost.

• It could be quicker for us to get going to reusing the bash scripts cardano-node-tests have. See local
testnet notes section for other examples of spinning up a local testnet.

• We could continue getting plutus end-to-end test coverage without the need to build our own framework
because the node test team will continue to maintain theirs regardless.

• Plutus team will still be required to support the node test team with defining and reviewing a subset of Plutus
tests in cardano-node-tests.

• Node test team may grow, less delays in getting Plutus tests implemented by a Python developer.

• The tests using cardano-cli already provide some assurance that downstream components are working
correctly, so there will be some duplication of test coverage by having an additional framework.

Additional Considerations

• Business stakeholders will want to see test results to think about producing and storing a report. It would be to
open source this along with the tests, like cardano-node-tests have done.

• At first, tests will be run on a private testnet but we must consider how these tests can also be run on a public
testnet. For example, initial wallet balances and utxos will need to be handled dynamically because we’d only
have control over these in the private testnet.

• Seeing as cardano-ledger-api and cardano-node-client are still in early stages of production it
would make sense not to block creation of plutus-e2e-tests. We can begin using cardano-api and
switch over when ready.

• End-to-end tests can be slow to execute and as the suite grows we may want to run a subset at more frequent
intervals. For example, we run tests for the latest Plutus version nightly but older tests/versions are run weekly,
or for tags/release only.
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Alternatives

Instead of creating a new repository it is possible the end-to-end tests could live in Plutus-apps. Although,
because the components under test span other repositories it would be restrictive and additional work at the time when
dependencies are updated in Plutus-apps, see argument 1.

We could use bash scripts to spin up a local testnet, which is the approach teams such as Djed and Hydra took.
Although, the decision is to use cardano-testnet, see argument argument 2.

Notes

This ADR document should be moved out of Plutus-apps` and into the new end-to-end test repository once
created.

Benchmarking hasn’t been covered above because we already have a team dedicated to testing cardano-node perfor-
mance that includes some Plutus scripts. It is an automated approach using cardano-cli.

Other places spinning up a local testnet

• https://github.com/woofpool/cardano-private-testnet-setup

• https://github.com/input-output-hk/mithril/mithril-test-lab

• https://github.com/input-output-hk/hydra/hydra-cluster

• https://github.com/input-output-hk/cardano-node/tree/master/scripts/byron-to-alonzo

• https://github.com/input-output-hk/cardano-js-sdk/tree/master/packages/e2e/local-network

• https://github.com/input-output-hk/cardano-wallet/blob/master/lib/wallet/exe/local-cluster.hs

• https://github.com/mlabs-haskell/plutip

5.6 Reference

5.6.1 Examples

Full examples of Plutus Applications can be found in the plutus-apps repository. The source code can be found
in the src and the tests in the test folder.

The examples are a mixture of simple examples and more complex ones, including:

• A crowdfunding application

• A futures application

• A stablecoin

• A uniswap clone

Important: Make sure to look at the same version of the plutus-apps repository as you are using, to ensure that the
examples work.
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5.6.2 Cost model parameters

The cost model for Plutus Core scripts has a number of parameters. These are listed and briefly described below. All
of these parameters are listed in the Cardano protocol parameters and can be individually adjusted.

For more details on the meaning of the parameters, consult IOHK [[2]].

Table 1: Machine parameters
Operation Parameter name Note
apply cekApplyCost-exBudgetCPU Constant CPU cost
apply cekApplyCost-exBudgetMemory Constant memory cost
builtin cekBuiltinCost-exBudgetCPU Constant CPU cost
builtin cekBuiltinCost-exBudgetMemory Constant memory cost
con cekConstCost-exBudgetCPU Constant CPU cost
con cekConstCost-exBudgetMemory Constant memory cost
delay cekDelayCost-exBudgetCPU Constant CPU cost
delay cekDelayCost-exBudgetMemory Constant memory cost
force cekForceCost-exBudgetCPU Constant CPU cost
force cekForceCost-exBudgetMemory Constant memory cost
lam cekLamCost-exBudgetCPU Constant CPU cost
lam cekLamCost-exBudgetMemory Constant memory cost
startup cekStartupCost-exBudgetCPU Constant CPU cost
startup cekStartupCost-exBudgetMemory Constant memory cost
var cekVarCost-exBudgetCPU Constant CPU cost
var cekVarCost-exBudgetMemory Constant memory cost

Table 2: Builtin parameters
Builtin function Parameter name Note
addInteger addInteger-cpu-arguments-intercept Linear model intercept for the CPU calculation
addInteger addInteger-cpu-arguments-slope Linear model coefficient for the CPU calculation
addInteger addInteger-memory-arguments-

intercept
Linear model intercept for the memory calcula-
tion

addInteger addInteger-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion

appendByteString appendByteString-cpu-arguments-
intercept

Linear model intercept for the CPU calculation

appendByteString appendByteString-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

appendByteString appendByteString-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion

appendByteString appendByteString-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion

appendString appendString-cpu-arguments-
intercept

Linear model intercept for the CPU calculation

appendString appendString-cpu-arguments-slope Linear model coefficient for the CPU calculation
appendString appendString-memory-arguments-

intercept
Linear model intercept for the memory calcula-
tion

appendString appendString-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion

bData bData-cpu-arguments Constant CPU cost
bData bData-memory-arguments Constant CPU cost

continues on next page
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Table 2 – continued from previous page
Builtin function Parameter name Note
blake2b_256 blake2b-cpu-arguments-intercept Linear model intercept for the CPU calculation
blake2b_256 blake2b-cpu-arguments-slope Linear model coefficient for the CPU calculation
blake2b_256 blake2b-memory-arguments Constant memory cost
chooseData chooseData-cpu-arguments Constant CPU cost
chooseData chooseData-memory-arguments Constant memory cost
chooseList chooseList-cpu-arguments Constant CPU cost
chooseList chooseList-memory-arguments Constant memory cost
chooseUnit chooseUnit-cpu-arguments Constant CPU cost
chooseUnit chooseUnit-memory-arguments Constant memory cost
consByteString consByteString-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

consByteString consByteString-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

consByteString consByteString-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion

consByteString consByteString-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion

constrData constrData-cpu-arguments Constant CPU cost
constrData constrData-memory-arguments Constant memory cost
decodeUtf8 decodeUtf8-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

decodeUtf8 decodeUtf8-cpu-arguments-slope Linear model coefficient for the CPU calculation
decodeUtf8 decodeUtf8-memory-arguments-

intercept
Linear model intercept for the memory calcula-
tion

decodeUtf8 decodeUtf8-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion

divideInteger divideInteger-cpu-arguments-
constant

Constant CPU cost (argument sizes above diago-
nal)

divideInteger divideInteger-cpu-arguments-
model-arguments-intercept

Linear model intercept for the CPU calculation
(argument sizes on or below diagonal)

divideInteger divideInteger-cpu-arguments-
model-arguments-slope

Linear model coefficient for the CPU calculation
(argument sizes on or below diagonal)

divideInteger divideInteger-memory-arguments-
intercept

Linear model intercept for the memory calcula-
tion (argument sizes on or below diagonal)

divideInteger divideInteger-memory-arguments-
minimum

Constant memory cost (argument sizes above di-
agonal)

divideInteger divideInteger-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion (argument sizes on or below diagonal)

encodeUtf8 encodeUtf8-cpu-arguments-
intercept

Linear model intercept for the CPU calculation
below diagonal

encodeUtf8 encodeUtf8-cpu-arguments-slope Linear model coefficient for the CPU calculation
encodeUtf8 encodeUtf8-memory-arguments-

intercept
Linear model intercept for the memory calcula-
tion

encodeUtf8 encodeUtf8-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion

equalsByteString equalsByteString-cpu-arguments-
constant

Constant CPU cost (arguments different sizes)

equalsByteString equalsByteString-cpu-arguments-
intercept

Linear model intercept for the CPU calculation
(arguments same size)

continues on next page
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Table 2 – continued from previous page
Builtin function Parameter name Note
equalsByteString equalsByteString-cpu-arguments-

slope
Linear model coefficient for the CPU calculation
(arguments same size)

equalsByteString equalsByteString-memory-
arguments

Constant memory

equalsData equalsData-cpu-arguments-
intercept

Linear model intercept for the CPU calculation

equalsData equalsData-cpu-arguments-slope Linear model coefficient for the CPU calculation
equalsData equalsData-memory-arguments Constant memory cost
equalsInteger equalsInteger-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

equalsInteger equalsInteger-cpu-arguments-slope Linear model coefficient for the memory calcula-
tion

equalsInteger equalsInteger-memory-arguments Constant memory cost
equalsString equalsString-cpu-arguments-

constant
Constant CPU cost (arguments different sizes)

equalsString equalsString-cpu-arguments-
intercept

Linear model intercept for the CPU calculation
(arguments same size)

equalsString equalsString-cpu-arguments-slope Linear model coefficient for the CPU calculation
(arguments same size)

equalsString equalsString-memory-arguments Constant memory cost
fstPair fstPair-cpu-arguments Constant CPU cost
fstPair fstPair-memory-arguments Constant memory cost
headList headList-cpu-arguments Constant CPU cost
headList headList-memory-arguments Constant memory cost
iData iData-cpu-arguments Constant CPU cost
iData iData-memory-arguments Constant memory cost
ifThenElse ifThenElse-cpu-arguments Constant CPU cost
ifThenElse ifThenElse-memory-arguments Constant memory cost
indexByteString indexByteString-cpu-arguments Constant CPU cost
indexByteString indexByteString-memory-

arguments
Constant memory cost

lengthOfByteString lengthOfByteString-cpu-arguments Constant CPU cost
lengthOfByteString lengthOfByteString-memory-

arguments
Constant memory cost

lessThanByteString lessThanByteString-cpu-
arguments-intercept

Linear model intercept for the CPU calculation

lessThanByteString lessThanByteString-cpu-
arguments-slope

Linear model coefficient for the CPU calculation

lessThanByteString lessThanByteString-memory-
arguments

Constant memory cost

lessThanEqualsByteStringlessThanEqualsByteString-cpu-
arguments-intercept

Linear model intercept for the CPU calculation

lessThanEqualsByteStringlessThanEqualsByteString-cpu-
arguments-slope

Linear model coefficient for the CPU calculation

lessThanEqualsByteStringlessThanEqualsByteString-
memory-arguments

Constant memory cost

lessThanEqualsInteger lessThanEqualsInteger-cpu-
arguments-intercept

Linear model intercept for the CPU calculation

lessThanEqualsInteger lessThanEqualsInteger-cpu-
arguments-slope

Linear model coefficient for the CPU calculation

continues on next page
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Table 2 – continued from previous page
Builtin function Parameter name Note
lessThanEqualsInteger lessThanEqualsInteger-memory-

arguments
Constant memory cost

lessThanInteger lessThanInteger-cpu-arguments-
intercept

Linear model intercept for the CPU calculation

lessThanInteger lessThanInteger-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

lessThanInteger lessThanInteger-memory-
arguments

Constant memory cost

listData listData-cpu-arguments Constant CPU cost
listData listData-memory-arguments Constant memory cost
mapData mapData-cpu-arguments Constant CPU cost
mapData mapData-memory-arguments Constant memory cost
mkCons mkCons-cpu-arguments Constant CPU cost
mkCons mkCons-memory-arguments Constant memory cost
mkNilData mkNilData-cpu-arguments Constant CPU cost
mkNilData mkNilData-memory-arguments Constant memory cost
mkNilPairData mkNilPairData-cpu-arguments Constant CPU cost
mkNilPairData mkNilPairData-memory-arguments Constant memory cost
mkPairData mkPairData-cpu-arguments Constant CPU cost
mkPairData mkPairData-memory-arguments Constant memory cost
modInteger modInteger-cpu-arguments-

constant
Constant CPU cost (argument sizes above diago-
nal)

modInteger modInteger-cpu-arguments-model-
arguments-intercept

Linear model intercept for the CPU calculation
(argument sizes on or below diagonal)

modInteger modInteger-cpu-arguments-model-
arguments-slope

Linear model coefficient for the CPU calculation
(argument sizes above diagonal)

modInteger modInteger-memory-arguments-
intercept

Linear model intercept for the memory calcula-
tion

modInteger modInteger-memory-arguments-
minimum

Constant memory cost (argument sizes above di-
agonal)

modInteger modInteger-memory-arguments-
slope

Linear model coefficient for the memory calcula-
tion (argument sizes on or below diagonal)

multiplyInteger multiplyInteger-cpu-arguments-
intercept

Linear model intercept for the CPU calculation

multiplyInteger multiplyInteger-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

multiplyInteger multiplyInteger-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion

multiplyInteger multiplyInteger-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion

nullList nullList-cpu-arguments Constant CPU cost
nullList nullList-memory-arguments Constant memory cost
quotientInteger quotientInteger-cpu-arguments-

constant
Constant CPU cost (argument sizes above diago-
nal)

quotientInteger quotientInteger-cpu-arguments-
model-arguments-intercept

Linear model intercept for the CPU calculation
(argument sizes on or below diagonal)

quotientInteger quotientInteger-cpu-arguments-
model-arguments-slope

Linear model coefficient for the CPU calculation
(argument sizes on or below diagonal)

quotientInteger quotientInteger-memory-
arguments-intercept

Linear model intercept for the CPU calculation
(argument sizes on or below diagonal)

continues on next page
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Table 2 – continued from previous page
Builtin function Parameter name Note
quotientInteger quotientInteger-memory-

arguments-minimum
Constant memory cost (argument sizes above di-
agonal)

quotientInteger quotientInteger-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion (argument sizes on or below diagonal)

remainderInteger remainderInteger-cpu-arguments-
constant

Constant CPU cost (argument sizes above diago-
nal)

remainderInteger remainderInteger-cpu-arguments-
model-arguments-intercept

Linear model intercept for the CPU calculation
(argument sizes on or below diagonal)

remainderInteger remainderInteger-cpu-arguments-
model-arguments-slope

Linear model coefficient for the CPU calculation
(argument sizes on or below diagonal)

remainderInteger remainderInteger-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion (argument sizes on or below diagonal)

remainderInteger remainderInteger-memory-
arguments-minimum

Constant memory cost (argument sizes above di-
agonal)

remainderInteger remainderInteger-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion (argument sizes on or below diagonal)

sha2_256 sha2_256-cpu-arguments-intercept Linear model intercept for the CPU calculation
sha2_256 sha2_256-cpu-arguments-slope Linear model coefficient for the CPU calculation
sha2_256 sha2_256-memory-arguments Constant memory cost
sha3_256 sha3_256-cpu-arguments-intercept Linear model intercept for the CPU calculation
sha3_256 sha3_256-cpu-arguments-slope Linear model coefficient for the CPU calculation
sha3_256 sha3_256-memory-arguments Constant memory cost
sliceByteString sliceByteString-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

sliceByteString sliceByteString-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

sliceByteString sliceByteString-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion

sliceByteString sliceByteString-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion

sndPair sndPair-cpu-arguments Constant CPU cost
sndPair sndPair-memory-arguments Constant memory cost
subtractInteger subtractInteger-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

subtractInteger subtractInteger-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

subtractInteger subtractInteger-memory-
arguments-intercept

Linear model intercept for the memory calcula-
tion

subtractInteger subtractInteger-memory-
arguments-slope

Linear model coefficient for the memory calcula-
tion

tailList tailList-cpu-arguments Constant CPU cost
tailList tailList-memory-arguments Constant memory cost
trace trace-cpu-arguments Constant CPU cost
trace trace-memory-arguments Constant memory cost
unBData unBData-cpu-arguments Constant CPU cost
unBData unBData-memory-arguments Constant memory cost
unConstrData unConstrData-cpu-arguments Constant CPU cost
unConstrData unConstrData-memory-arguments Constant memory cost
unIData unIData-cpu-arguments Constant CPU cost
unIData unIData-memory-arguments Constant memory cost

continues on next page
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Table 2 – continued from previous page
Builtin function Parameter name Note
unListData unListData-cpu-arguments Constant CPU cost
unListData unListData-memory-arguments Constant memory cost
unMapData unMapData-cpu-arguments Constant CPU cost
unMapData unMapData-memory-arguments Constant memory cost
verifySignature verifySignature-cpu-arguments-

intercept
Linear model intercept for the CPU calculation

verifySignature verifySignature-cpu-arguments-
slope

Linear model coefficient for the CPU calculation

verifySignature verifySignature-memory-arguments Constant memory cost

5.6.3 Glossary

active endpoint An endpoint that is active on a contract application instance. Indicates that the contract application
instance is waiting for input. The set of active endpoints is part of the state of the contract application instance
and changes over time.

address The address of an UTXO says where the output is “going”. The address stipulates the conditions for unlock-
ing the output. This can be a public key hash, or (in the Extended UTXO model) a script hash.

Cardano The blockchain system upon which the Plutus Platform is built.

contract application An application written against the contract application API, which runs in the PAB.

contract application API The API that provides an interface between a contract application and the PAB. Also allows
the contract to declare contract endpoints that will be forwarded on to PAB clients via the application interface.

contract application instance A configured, running instance of a contract application. Configuration and initial-
ization may require additional parameters to be set by the user. Has its state and lifecycle managed by the
PAB.

contract endpoint An interface point exposed by a contract application as part of its own API. These are forwarded
on by the PAB to the wallet frontend or other clients.

contract executable A compiled executable of a contract application. These are what are actually distributed to users
and run by the PAB.

currency A class of token whose minting is controlled by a particular monetary policy script. On the Cardano ledger
there is a special currency called Ada which can never be minted and which is controlled separately.

datum The data field on script outputs in the Extended UTXO model.

emulator An in-process (single thread) emulated blockchain for testing and analysing Plutus apps.

endpoint A potential request made by a contract application for user input. Every endpoint has a name and a type.

Extended UTXO Model The ledger model which the Plutus Platform relies on.

This is implemented in the Alonzo hard fork of the Cardano blockchain.

See What is a ledger?

minting A transaction which mints tokens creates new tokens, providing that the corresponding minting policy script
is satisfied. The amount minted can be negative, in which case the tokens will be destroyed instead of created.

minting context A data structure containing a summary of the transaction being validated, and the current minting
policy which is being run.

minting policy script A script which must be satisfied in order for a transaction to mint tokens of the corresponding
currency.
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Hydra A Layer 2 scalability solution for Cardano. See Chakravarty et al. [[1]].

distributed ledger

ledger See What is a ledger?

Marlowe A domain-specific language for writing financial contract applications.

multi-asset A generic term for a ledger which supports multiple different asset types natively.

off-chain code The part of a contract application’s code which runs off the chain, usually as a contract application.

on-chain code The part of a contract application’s code which runs on the chain (i.e. as scripts).

PAB client API The API that the PAB provides to allow PAB clients to interact with contract application instances.
Contract endpoints which are exposed by running instances can be called via the client API.

PAB client A program which interacts with a contract application instance via the PAB’s client API. Examples of
PAB clients include:

1. Wallet frontends such as Daedalus.

2. Other user software which uses the contract application as part of a wider system.

Plutus Application An application written using the Plutus Application Framework.

pab

Plutus Application Backend (PAB) The component which manages Plutus Applications that run on users’ machines.
It handles:

1. Interactions with the node

2. Interactions with the wallet backend

3. Interactions with the wallet frontend

4. State management

5. Tracking historical chain information

Plutus Core The programming language in which scripts on the Cardano blockchain are written. Plutus Core is a
small functional programming language—a formal specification is available with further details. Plutus Core is
not read or written by humans, it is a compilation target for other languages.

See What is Plutus Foundation?

Plutus IR An intermediate language that compiles to Plutus Core. Plutus IR is not used by users, but rather as a
compilation target on the way to Plutus Core. However, it is significantly more human-readable than Plutus
Core, so should be preferred in cases where humans may want to inspect the program.

Plutus Platform The combined software support for writing contract applications, including:

1. Plutus Foundation, and

2. The Plutus Application Framework

See What is Plutus Platform?

Plutus SDK The libraries and development tooling for writing contract applications in Haskell.

Plutus Tx The libraries and compiler for compiling Haskell into Plutus Core to form the on-chain part of a contract
application.

redeemer The argument to the validator script which is provided by the transaction which spends a script output.

rollback The result of the local node switching to the consensus chain. See What is a rollback?.

schema The set of all endpoints of a contract application.
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script A generic term for an executable program used in the ledger. In the Cardano blockchain, these are written in
Plutus Core.

script output A UTXO locked by a script.

token A generic term for a native tradeable asset in the ledger.

transaction output Outputs produced by transactions. They are consumed when they are spent by another transac-
tion. Typically, some kind of evidence is required to be able to spend a UTXO, such as a signature from a public
key, or (in the Extended UTXO Model) satisfying a script.

UTXO An unspent transaction output

utxo congestion The effect of multiple transactions attempting to spend the same transaction output. See UTXO
congestion.

validator script The script attached to a script output in the Extended UTXO model. Must be run and return positively
in order for the output to be spent. Determines the address of the output.

validation context A data structure containing a summary of the transaction being validated, and the current input
whose validator is being run.

5.6.4 Bibliography

5.6.5 Elsewhere

• Haddock generated documentation

5.6. Reference 163

https://playground.plutus.iohkdev.io/doc/haddock/


Plutus Tools SDK User Guide, Release 1.0.0

164 Chapter 5. Public Plutus libraries documentation



BIBLIOGRAPHY

[1] Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos Kiayias, and
Alexander Russell. Hydra: fast isomorphic state channels. Technical Report, Cryptology ePrint Archive, Report
2020/299, 2020. URL: https://eprint.iacr.org/2020/299.

[2] IOHK. Plutus platform technical report. Technical Report, IOHK, 2019. Available at https://github.com/input-
output-hk/plutus.

165

https://eprint.iacr.org/2020/299


Plutus Tools SDK User Guide, Release 1.0.0

166 Bibliography



INDEX

A
active endpoint, 161
address, 161

C
Cardano, 161
contract application, 161
contract application API, 161
contract application instance, 161
contract endpoint, 161
contract executable, 161
currency, 161

D
datum, 161
distributed ledger, 162

E
emulator, 161
endpoint, 161
Extended UTXO Model, 161

H
Hydra, 162

L
ledger, 162

M
Marlowe, 162
minting, 161
minting context, 161
minting policy script, 161
multi-asset, 162

O
off-chain code, 162
on-chain code, 162

P
pab, 162
PAB client, 162

PAB client API, 162
Plutus Application, 162
Plutus Application Backend (PAB), 162
Plutus Core, 162
Plutus IR, 162
Plutus Platform, 162
Plutus SDK, 162
Plutus Tx, 162

R
redeemer, 162
rollback, 162

S
schema, 162
script, 163
script output, 163

T
token, 163
transaction output, 163

U
UTXO, 163
utxo congestion, 163

V
validation context, 163
validator script, 163

167


	Plutus tools SDK
	Plutus tools SDK repository
	Use cases
	Plutus starter template repository (deprecated)
	Public Plutus libraries documentation
	Explanations
	Tutorials
	How-to guides
	Troubleshooting
	Architectural Decision Records
	Reference

	Bibliography
	Index

